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Представлены результаты по созданным нами полупроводниковому источнику спин-поляризо-
ванных электронов и спин-детектору, а также концепция их интегрирования в метод спектроско-
пии диссоциативного захвата электронов (СДЗЭ) с учетом необходимых значений параметров 
электронного пучка, при которых наблюдаются резонансное рассеяние и диссоциативный захват. 
Описана конструкция установки для изучения резонансного рассеяния спин-поляризованных 
электронов методом СДЗЭ, которая позволит проводить исследования внутримолекулярной 
динамики изолированных отрицательных ионов. Основная цель разработки и изготовления уста-
новки состоит в возможности исследования с ее помощью взаимодействия спин-поляризованных 
электронов с хиральными молекулами, что позволит осуществить экспериментальную проверку 
гипотезы Вестера–Ульбрихта о происхождении биологической гомохиральности. Помимо дан-
ного основополагающего вопроса, ожидаемые результаты предлагаемого эксперимента важны 
для перспективных направлений спинтроники, а также для установления молекулярных механиз-
мов различного биологического действия энантиомеров фармацевтических препаратов.
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в структуре молекулы существуют только два 
энантиомера, отличающихся друг от друга как 
зеркальные отражения. Очевидно, что ника-
кими другими операциями симметрии невоз-
можно совместить в пространстве два энантио-
мера. Такие мишени благодаря своей симметрии 
(или ее отсутствию) позволяют наблюдать новые 
уникальные эффекты рассеяния [3, 4]. Помимо 
теоретических предсказаний о поляризации 
изначально неполяризованного пучка электро-
нов, испытавших упругое рассеяние на оптиче-
ски активных молекулах [5], отмечается наличие 
двух эффектов рассеяния, присущих хираль-

1. ВВЕДЕНИЕ

Механизм рассеяния электронов атомами 
и молекулами, ответственный за различные 
спин-зависимые эффекты, такие как обменное 
рассеяние, спин-орбитальное взаимодействие 
или их комбинации, в общем случае может быть 
установлен из зависимости сечения рассеяния от 
энергии падающих электронов и Z-мишени [1, 2]. 
Существует класс мишеней, которые устроены 
значительно сложнее,  – хиральные молекулы. 
В  простейшем случае наличия только одного 
асимметричного атома (центра хиральности) 
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ным мишеням: различная величина ослабления 
пучка продольно поляризованных электронов 
и вращение спина рассеянных электронов при 
изначально поперечной поляризации пучка [6].

Как отмечено автором работы  [6], первый 
эффект является аналогом кругового дихроизма, 
тогда как второй – вращения плоскости поля-
ризации света. Важно отметить, что взаимодей-
ствие поляризованных электронов с хираль-
ными молекулами дает косвенную информацию 
о происхождении биологической гомохирально-
сти, прежде всего в связи с гипотезой Вестера–
Ульбрихта [7]. Гипотеза заключается в том, что 
космические бета-лучи преимущественно раз-
рушали одну часть пребиотических хиральных 
молекул, оставляя противоположную часть для 
участия в молекулярной эволюции. Можно пред-
положить, что поляризационная зависимость 
рассеяния электронов хиральными молекулами, 
таким образом, является косвенным доказатель-
ством такой картины. Однако физические меха-
низмы, вызывающие асимметрию в рассеянии 
спин-поляризованных электронов, эксперимен-
тально практически не исследованы.

Существует лишь ограниченный круг работ по 
экспериментальному исследованию спиновых 
эффектов, возникающих при упругом рассеянии 
медленных (единицы–десятки электронвольт) 
электронов хиральными молекулами, выпол-
ненных с целью обнаружения зеркальной асим-
метрии. Ранние результаты по обнаружению 
спиновых эффектов для молекул незамещенной 
камфоры  [8] не подтвердились дальнейшими 
работами [9, 10], однако асимметрия сигнала в 
сечении рассеяния была установлена для произ-
водных камфоры в диапазоне энергий взаимо-
действия 0.5–10 эВ [10]. Позднее асимметрия в 
полном сечении рассеяния спин-поляризован-
ных электронов была продемонстрирована для 
молекул галоген-замещенной камфоры  [11] в 
схеме метода спектроскопии проходящих элек-
тронов [12]. Однако в контексте проверки гипо-
тезы Вестера–Ульбрихта необходимо обнаруже-
ние асимметрии фрагментации энантиомеров 
при различной поляризации первичного пучка 
электронов, что возможно реализовать только 
в схеме метода спектроскопии диссоциативного 
захвата электронов (СДЗЭ).

До настоящего времени был проведен един-
ственный эксперимент по изучению диссо-
циативного захвата электронов молекулами 
галоген-замещенной камфоры, выполненный, 

однако, в  схеме метода спектроскопии прохо-
дящих электронов, т. е. без селекции образую-
щихся отрицательных ионов (ОИ) по массе и с 
возможностью регистрации только достаточно 
интенсивных токов ОИ [13, 14]. В данных работах 
практически на пределе чувствительности экс-
перимента была продемонстрирована асиммет
рия образования фрагментарных ОИ галогенов, 
являющихся доминирующим каналом распада 
отрицательных молекулярных ионов галоген-за-
мещенной камфоры. Однако величина эффекта, 
плохая статистика, а  также отсутствие прямых 
спин-зависимых измерений не позволили одно-
значно подтвердить или опровергнуть гипотезу 
Вестера–Ульбрихта.

В нашей работе представлена концепция изго-
тавливаемой установки для изучения резонанс-
ного рассеяния и фрагментации молекул-ми-
шеней по механизму диссоциативного захвата 
электронов при использовании спин-поляризо-
ванных электронов, а также результаты создания 
и изучения свойств новых спин-поляризован-
ных источников и детекторов спина свободных 
электронов на основе полупроводниковых гете-
роструктур и их интегрирования в метод СДЗЭ. 
Отдельно отметим, что такая интеграция осу-
ществляется впервые. В частности, описанные в 
данной работе методы и техника работы с пуч-
ком спин-поляризованных электронов не были 
доступны авторам пионерских работ [13, 14].

2. ИСТОЧНИК СПИН-ПОЛЯРИЗОВАННЫХ 
ЭЛЕКТРОНОВ

До настоящего времени самым распро-
страненным источником спин-поляризован-
ных электронов является фотокатод на основе 
GaAs [15]. Работа фотокатода основана на двух 
явлениях: (1) создание неравновесных спин-по-
ляризованных электронов в зоне проводимости 
за счет эффекта оптической накачки [16] и (2) 
снижение уровня вакуума на поверхности ниже 
дна зоны проводимости в объеме полупровод
ника (эффективное отрицательное электронное 
сродство) за счет активирования поверхности 
цезием и кислородом.

Одной из сложных технических проблем при 
исследовании рассеяния спин-поляризованных 
электронов на молекулах является ограничен-
ное время жизни GaAs-фотокатода – источника 
спин-поляризованных электронов. Хорошо 
известно, что GaAs-фотокатод чувствителен 
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даже к остаточной атмосфере вакуумной камеры. 
Так, на уровне базового давления 10–10  Торр 
время жизни (деградации) фотокатода может 
составлять часы, оно критически зависит от 
состава остаточной атмосферы. Использова-
ние ячеек высокого давления (0.5–1.0 мТорр) в 
методе СДЗЭ требует высокой скорости диффе-
ренциальной откачки всего тракта электронной 
оптики и фотокатодной камеры, однако это не 
решает кардинальным образом проблемы дегра-
дации GaAs-фотокатода. По этой причине необ-
ходимо использовать более устойчивые к оста-
точной атмосфере вакуумной камеры источники 
спин-поляризованных электронов. Одним из 
таких источников является фотокатод на основе 
мультищелочных соединений.

Мультищелочные фотокатоды широко 
используются в качестве источников электронов 
на различных коллайдерах [17], в электронных 
умножителях и электронно-оптических преоб-
разователях. Недавно нами было показано, что 
фотокатод на основе Na2KSb является также 
эффективным источником спин-поляризован-
ных электронов [18]. Для создания спин-поля-
ризованных электронов в полупроводниковых 
структурах используется явление оптической 
ориентации, суть которого заключается в пере-
даче углового момента от фотона электрону при 
поглощении циркулярно поляризованного света. 
Обнаружено, что соединение Na2KSb имеет зон-
ную структуру, схожую со структурой GaAs, 
включая величину ширины запрещенной зоны, 
и в этом соединении также наблюдается эффект 
оптической ориентации. О  наличии эффекта 
оптической ориентации (накачки) можно судить 
из измерений циркулярно поляризованной 
фотолюминесценции [16].

Проведение исследований спин-зависи-
мых фотоэмиссионных свойств фотокатодов в 
общем случае требует сверхвысоковакуумную 
камеру, содержащую исследуемый материал, 
систему электронных линз и энергоанализатор. 
Данную систему можно упростить до вакуум-
ного фотодиода, электродами которого явля-
ются исследуемые гетероструктуры, одна из 
которых может являться источником, а другая – 
детектором спин-поляризованных электронов 
(рис.  1)  [19,  20]. Ранее уже были изготовлены 
подобные вакуумные фотодиоды с гетерострук-
турами А3В5 и было продемонстрировано удоб-
ство данной системы для изучения эмиссионных 
и инжекционных свойств материалов  [21, 22]. 
Фотодиод представляет собой цилиндрический 
корпус диаметром 30  мм и высотой 10–15мм, 
выполненный из алюмооксидной керамики, на 
торцах которого закреплены металлостеклян-
ные узлы с исследуемыми фотокатодами (рис. 1). 
Рабочие диаметры катода и анода составляют 
18 мм, зазор между электродами 0.7–1.5 мм.

Гетероструктуры фотокатода и спин-детек-
тора А3В5 выращивались на подложках GaAs 
методом молекулярно-лучевой эпитаксии или 
осаждением металлорганических соединений 
из газовой фазы. Поверх гетеростурктур нано-
силось антиотражающее покрытие SiO. После 
роста гетероэпитаксиальные структуры нареза-
лись на диски по размеру фотокатодных узлов 
и приваривались к стеклу фотокатодного узла 
через покрытие SiO методом термодиффузи-
онной сварки. Затем химическим селективным 
травлением удалялась GaAs-подложка и в случае 
фотокатода буферный слой AlGaAs. Заключи-
тельный этап процедуры очистки как катода, так 
и анода проводился в перчаточном боксе, запол-

Рис. 1. a – Фотография фотодиода со стороны фотокатода; б – схематическое изображение фотодиода в разрезе и 
принцип создания спин-поляризованных электронов и их детектирования; в – фотография анода.

(а) (б) (в)
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ненном чистым азотом, где катод и анод подвер-
гались химической обработке в растворе HCl в 
изопропиловом спирте [23].

Обе очищенные поверхности активировались 
до состояния эффективного отрицательного 
электронного сродства путем адсорбции цезия 
и кислорода в сверхвысоковакуумной камере. 
Фотокатод и анод были герметично закреплены 
на противоположных сторонах цилиндрического 
корпуса из алюмооксидной керамики в сверхвы-
соком вакууме [24].

При изготовлении фотодиодов с мультище-
лочными фотокатодами материал фотокатода 
наносился на металлостеклянный фотокатодный 
узел в высоковакуумной камере непосредственно 
перед герметизацией. В  случае изготовления 
фотодиодов с мультищелочным фотокатодом и 
А3В5-анодом анодная гетероструктура активиро-
валась путем нанесения цезия и сурьмы. Фото-
катоды на основе мультищелочных соединений 
демонстрируют необходимые фотоэмиссион-
ные характеристики для использования в методе 
СДЗЭ: ток эмиссии превышает 1 мкА при раз-
бросе энергии в пучке электронов 50–100 мэВ.

Для проверки поляризационных свойств 
Na2KSb:Сs-фотокатода были измерены цирку-
лярно поляризованные спектры фотолюминес-
ценции (ФЛ). На рис. 2a представлены спектры 

циркулярно поляризованной ФЛ мультищелоч-
ного фотокатода при освещении циркулярно 
поляризованным лазерным излучением с энер-
гией фотона hω  = 1.49  эВ (830  нм), на рис.  2б 
представлен спектр степени поляризации ФЛ. 
Зависимость степени круговой поляризации 
ФЛ в Na2KSb от энергии падающего фотона 
показана на рис. 2в. Степень поляризации ФЛ 
быстро уменьшается с ростом энергии пада-
ющего излучения примерно вплоть до 2.4  эВ. 
Однако, в отличие от GaAs, где поляризация ФЛ 
становится нулевой [18], в Na2KSb она остается 
на уровне около 4% при более высоких энер-
гиях возбуждения. Еще одно важное отличие от 
GaAs состоит в том, что спад поляризации ФЛ в 
Na2KSb проходит при больших значениях энер-
гии возбуждения, что связано с разницей в вели-
чине спин-орбитального расщепления в Na2KSb 
и GaAs (0.55 и 0.34 эВ соответственно).

Сходство в зависимости поляризации ФЛ при 
низких энергиях возбуждения, а также сходство 
зонной структуры Na2KSb и GaAs [18] доказы-
вает, что в Na2KSb наблюдается эффект оптиче-
ской ориентации, это сходство позволяет пред-
положить, что правила отбора для оптических 
переходов для Na2KSb и GaAs одинаковы. При 
этом степень поляризации ФЛ в Na2KSb даже при 
комнатной температуре оказалась равна 23%, 
что близко к предельному теоретическому зна-
чению 25%. Если предположить отсутствие рас-
сеяния по спину в процессе эмиссии электрона 
в вакуум, то можно ожидать, что максимальная 
поляризация фотоэмитированных электронов 
из Na2KSb равна 45–50%.

3. ДЕТЕКТОР СПИН-ПОЛЯРИЗОВАННЫХ 
ЭЛЕКТРОНОВ

Идея полупроводникового спин-детектора 
заключается в инжекции свободных электронов 
на дно зоны проводимости с последующей излу-
чательной рекомбинацией электрона с дыркой с 
испусканием кванта света. Поляризация излуче-
ния при рекомбинации спин-поляризованных 
электронов также обусловлена передачей угло-
вого момента от электронов свету, поэтому по 
степени циркулярно поляризованной фотолюми-
несценции (ФЛ) можно судить о степени поляри-
зации электронов, генерируемых в фотоэмиттере, 
а по степени поляризации катодолюминесцен-
ции (КЛ) – о степени поляризации электронов, 
инжектируемых из  вакуума в  анод-детектор. 

Рис. 2. a – Циркулярно поляризованные (σ+, σ–) 
компоненты спектров фотолюминесценции фото-
катода Na2KSb:Cs при освещении циркулярно по-
ляризованным светом с энергией 1.49 эВ (830 нм); 
пик при энергии фотона 1.42 эВ соответствует ши-
рине запрещенной зоны Na2KSb; б – соответствую-
щий спектр степени циркулярной поляризации ФЛ, 
определенный как PPL = (Iσ+ – Iσ–) / (Iσ+ + Iσ–); 
в – зависимость степени циркулярной поляризации 
излучения ФЛ для Na2KSb от энергии падающего 

фотона.

(а)

(б)

(в)
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В данном случае под КЛ подразумевается излу-
чение, генерируемое при рекомбинации первич-
ных электронов, инжектированных в полупро-
водник из вакуума, при этом регистрация может 
проводиться с пространственным разрешением.

В качестве спин-детектора изучались полу-
проводниковые гетероструктуры на основе 
хорошо известной гетеропары GaAs/Al1–xGaxAs. 
Циркулярно поляризованные спектры КЛ, изме-
ренные при инжекции спин-поляризованных 
электронов из фотокатода Na2KSb:Cs с энергией 
1.0 эВ, показаны на рис. 3a.

Максимальная интенсивность КЛ соот-
ветствует энергии излучения 1.53  эВ (810  нм), 
что совпадает с шириной запрещенной зоны 
Al0.11Ga0.89As. Степень круговой поляризации 
излучения КЛ составляла 4% (рис. 3б). Зависи-
мость степени круговой поляризации КЛ, полу-
ченная при инжекции спин-поляризованных 
электронов из фотокатода Na2KSb:Cs, от энер-
гии инжектированных электронов в диапазоне 
0.6–4  эВ в режиме измерения спектров и изо-
бражений показана на рис.  3в. Для Na2KSb:Cs 
максимальная степень поляризации КЛ равна 
9.5% при низких кинетических энергиях (0.6 эВ), 
она монотонно уменьшается примерно до 1% по 
мере увеличения энергии электрона до 4 эВ. При 
сравнении поляризации КЛ для Na2KSb:Cs и 

фотокатода GaAs:Cs-O оказалось, что последняя 
в два раза меньше. Предполагая, что поляриза-
ция фотоэлектронов от GaAs-катода находится 
в диапазоне 20–25% [18], можно сделать вывод, 
что поляризация фотоэлектронов, эмитирован-
ных из Na2KSb:Cs, лежит в диапазоне 40–50%, 
что находится в хорошем согласии с оценкой 
степени поляризации, сделанной из измерений 
поляризованной ФЛ.

Для практических применений в спин-поля-
риметрии важными характеристиками детектора 
являются функция Шермана S = A / P0, где А – 
измеряемая функция асимметрии при известной 
поляризация электронного пучка, P0 – отража-
ющая селективность поляриметра к проекции 
спина электрона, показатель качества (демон-
стрирующий чувствительность поляриметра) 
определяется формулой F = S2ICL / I0, где ICL – 
интенсивность регистрируемой катодолюминес-
ценции, а I0 – ток падающих электронов.

Показано, что функция Шермана детектора 
на основе Al0.11Ga0.89As составляет Seff ≈ 0.3 [24], 
а оценка одноканальной эффективности детек-
тирования дает значение F ≈ 1 ∙ 10–3. При этом 
зависимость степени циркулярной поляризации 
КЛ от кинетической энергии инжектируемых 
электронов и ее максимальное значение опреде-
ляются релаксацией спина в “объеме” полупро-
водниковой гетероструктуры, а внешний кван-
товый выход КЛ ограничен безызлучательной 
рекомбинацией.

Оптимизация состава и структуры, а  также 
технологических параметров изготовления 
спин-детекторных гетероструктур могут значи-
тельно увеличить их эффективность – до значе-
ний параметров, превышающих уровень у суще-
ствующих типов детекторов в одноканальном 
режиме и значительно превышающих их в мно-
гоканальном режиме работы.

Таким образом, можно заключить, что 
спин-детектор на основе полупроводниковых 
гетероструктур с успехом может быть исполь-
зован для измерения спиновой поляризации 
свободных электронов. В  отличие от однока-
нального мотт-детектора, полупроводниковый 
детектор может быть использован как многока-
нальный детектор с пространственным разреше-
нием, что повышает эффективность в Nch раз, где 
Nch – число каналов.

Другой тип спин-детектора, который также 
может быть использован в экспериментах СДЗЭ, 
состоит из гетероструктуры ферромагнитный 

Рис. 3. a  – Циркулярно поляризованные (σ+, σ–) 
компоненты спектров катодолюминесценции, из-
меренные при инжекции спин-поляризованных 
электронов, эмитированных из фотокатода Na2KS-
b:Cs при ускоряющем напряжении 1.0 В, в анодную 
гетероструктуру Al0.11Ga0.89As; б – степень циркуляр-
ной поляризации КЛ, определенная как PКЛ = (Iσ+ – 
Iσ–)/(Iσ+ + Iσ–); в  – сравнительные зависимости 
степени циркулярной поляризации КЛ от энергии 
инжектированных спин-поляризованных электро-
нов из фотокатода Na2KSb:Cs в режиме измерения 

спектров и изображений.

(а)

(б)

(в)
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слой/полупроводник  [25–27]. Спин-детектор 
на основе структуры ферромагнетик/полупро-
водник уступает по эффективности описанному 
выше детектору, однако он может оказаться более 
стабильным в условиях работы метода СДЗЭ.

4. ЭКСПЕРИМЕНТАЛЬНАЯ УСТАНОВКА 
ДЛЯ ИЗУЧЕНИЯ РАССЕЯНИЯ СПИН-
ПОЛЯРИЗОВАННЫХ ЭЛЕКТРОНОВ 

МЕТОДОМ СДЗЭ

Результаты создания и изучения свойств новых 
спин-поляризованных источников и детекторов 
спина свободных электронов на основе полупро-
водниковых гетероструктур позволили нам при-
ступить к разработке и изготовлению новой, не 
имеющей аналогов установке по исследованию 
резонансного рассеяния методом СДЗЭ. Схема-
тическое изображение концептуальной много-
камерной сверхвысоковакуумной установки для 
изучения рассеяния спин-поляризованных элек-
тронов методом СДЗЭ [28, 29] показано на рис. 4.

Установка состоит из четырех основных 
камер: основной камеры (реакционной, target 
chamber); фотокатодной камеры (source cham-
ber); камеры роста/подготовки фотокатодов 

(growth & activation chamber); камеры анализа 
спиновой поляризации электронов (spin-detec-
tor chamber). Для загрузки фотокатодных узлов к 
ростовой камере будет пристыкована загрузоч-
ная (шлюзовая) камера. Все камеры будут иметь 
независимые средства откачки, камеры будут 
отделены шиберами. Базовое давление в основ-
ных камерах должно быть не выше 10–10 мбар.

В основной камере будет расположена ячейка 
столкновений для реализации техники скрещен-
ных пучков (crossed-beam technique) в СДЗЭ [30]: 
пучок исследуемых нейтральных молекул, при-
готовленный в эффузивном источнике, пере-
секается под прямым углом пучком медленных 
(0–15  эВ) продольно спин-поляризованных 
электронов. В  области пересечения пучков 
образуются отрицательные молекулярные ионы, 
распадающиеся как по каналу автоотщепления 
электрона, так и за счет диссоциации на ней-
тральные и отрицательно заряженные фраг-
менты. Последние анализируются с помощью 
квадрупольного масс-спектрометра (диапазон 
масс 1–300) в зависимости от энергии электро-
нов в зондирующем пучке.

Отметим, что в обычной технике метода 
СДЗЭ  [28, 31] характеристики электронного 

Рис. 4. Схематическое изображение многокамерной сверхвысоковакуумной установки для изучения рассеяния 
спин-поляризованных электронов методом спектроскопии диссоциативного захвата электронов.
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пучка являются следующими: ток пучка порядка 
1  мкА, ширина на полувысоте (FWHM) рас-
пределения электронов по энергии 0.4–0.5 эВ, 
точность определения положения резонансов в 
сечении рассеяния электронов ±0.1  эВ. Кали-
бровка шкалы энергий проводится в основном 
по сигналу долгоживущих отрицательных моле-
кулярных ионов SF6

−,  образующихся при захвате 
тепловых (нулевая энергия) электронов моле-
кулами гексафторида серы. При использовании 
трохоидального монохроматора энергии элек-
тронов  [32, 33] величина FWHM уменьшается 
до значений 30–50 мэВ. При этом, однако, ток 
пучка падает до величин порядка наноампер, 
что заметно снижает чувствительность при реги-
страции токов ОИ.

При исследовании энантиомеров хиральных 
молекул регистрируемой величиной является 
асимметрия сигнала А [11], рассчитываемая с помо-
щью соотношения A+(–) = [(I↑ – I↓)/(I↑ + I↓)]+(–), где 
индексы “+” и “–“ соответствуют двум энантио
мерам (в простейшем случае наличия одного 
хирального центра в молекуле), I = I(ε) – интен-
сивность измеряемого тока ОИ для заданного 
канала распада в зависимости от энергии элек-
тронов ε в первичном пучке при направлении 
спина электрона, совпадающего с его импульсом 
↑ или противоположного ему ↓.

В фотокатодной камере будет установлен 
держатель фотокатодного узла с возможностью 
нагрева до температуры 500 К и охлаждения до 
температуры 80–90 К.  Фотокатоды на основе 
как Na2KSb, так и GaAs представляют собой тон-
кие слои на стеклянной подложке, что позволяет 
проводить фотоэмиссию поляризованных элек-
тронов при освещении фотокатода на отражение 
(лазер 1) и на просвет (лазер 2), рис. 4. Лазеры 
1, 2 можно также использовать для оптической 
ориентации молекул в основной камере. Фото
эмитированные из катода электроны далее пере-
даются с помощью электронной оптики в ячейку 
высокого давления в основной камере.

Камера роста/подготовки катодов предна-
значена для роста мультищелочного фотокатода 
методом молекулярно-лучевой или газофазной 
эпитаксии. Для роста мультищелочного соеди-
нения Na2KSb/Cs,Sb используются источники 
Na, K, Sb, а также Cs для активирования поверх-
ности катода. В  качестве подложки исполь-
зуется боросиликатное стекло, что позволяет 
работать с фотокатодом в режимах на просвет 
и отражение. Толщина активного слоя Na2KSb 

оптимизируется в процессе роста, исходя из 
получения максимального тока фотоэмиссии, 
который определяется, главным образом, глу-
биной поглощения света и диффузионной дли-
ной неосновных носителей (фотоэлектронов). 
Для тестовых измерений планируется использо-
вать также стандартные GaAs-фотокатоды (или 
фотокатоды на соединениях А3В5), приваренные 
на стеклянный узел [24].

В камере анализа спиновой поляризации элек-
тронов, рассеянных на молекулах мишени, будут 
использованы полупроводниковые спин-детек-
торы с пространственным разрешением, разра-
ботанные нами ранее  [18, 24]. Использование 
двух детекторов позволит измерять три компо-
ненты спина рассеянных электронов.

5. ЗАКЛЮЧЕНИЕ И ПЕРСПЕКТИВЫ

Устойчивость мультищелочных фотокатодов 
к деградации, а  также обнаруженное их новое 
свойство как источника спин-поляризованных 
электронов, делают эти фотокатоды перспек-
тивными в реализации метода спектроскопии 
диссоциативного захвата поляризованных элек-
тронов. Более того, предварительные результаты 
изучения напряженного фотокатода на основе 
Na2KSb:Cs демонстрируют возможность полу-
чения пучка электронов с поляризацией, значи-
тельно превышающей 50%. Спин-поляризован-
ная фотоэмиссия из Na2KSb:Cs открывает также 
возможность создания новых эффективных 
источников электронов для ускорителей, одно-
временно обладающих высоким квантовым выхо-
дом, спиновой поляризацией эмитируемых элек-
тронов, долговечностью и низким эмиттансом.

Спин-детекторы на основе полупроводни-
ковых структур являются оптимальными для 
проведения экспериментов СДЗЭ. В отличие от 
стандартных мотт-детекторов, они работают в 
области низких энергий электронов (единицы 
эВ в сравнении с десятками кэВ для мотт-детек-
тора) – в диапазоне энергий электронов метода 
СДЗЭ, что также исключает горение разряда. 
Полученные характеристики полупроводни-
ковых спин-детекторов (функция Шермана, 
эффективность, пространственное разрешение) 
оказываются лучше характеристик мотт-детек-
тора, что позволит добиться значительно лучшей 
статистики в экспериментах СДЗЭ.

Разрабатываемая установка будет носить 
модульный характер, что позволит перестраивать 
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схему эксперимента под различные задачи. Пред-
ставленная схема измерения СДЗЭ может быть 
преобразована в метод спектроскопии характери-
стических потерь энергии электронов с исполь-
зованием монохроматического пучка спин-поля-
ризованных электронов для изучения магнитных 
и спин-зависимых свойств поверхностей твердых 
тел. На основе источника Na2KSb:Cs возможно 
изготовление электронного микроскопа на 
спин-поляризованных электронах для изучения 
магнитных свойств с высоким пространствен-
ным разрешением, а также дифрактометра для 
изучения спин-орбитального взаимодействия 
поляризованных электронов с поверхностными 
атомами.

Таким образом, создаваемый метод спек-
троскопии диссоциативного захвата спин-по-
ляризованных электронов должен ответить на 
фундаментальный вопрос о происхождении 
биологической гомохиральности и наблюдае-
мой хиральной асимметрии функционирова-
ния живой материи, в  частности внести вклад 
в понимание процессов селективного действия 
фармацевтических препаратов на молекулярном 
уровне. Этот метод позволит также развивать 
поверхностно-чувствительные спин-зависимые 
электронно-спектроскопические методы иссле-
дования, в  том числе для приложения ожида-
емых результатов в актуальных направлениях 
спинтроники.
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