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1. ВВЕДЕНИЕ

Фотонный спектрометр (ФОС)  – электро-
магнитный калориметр с высоким разрешением 
эксперимента ALICE [1]. ФОС состоит из четы-
рех одинаковых модулей, расположенных вну-
три магнита L3 в  шахте экспериментальной 
зоны на глубине 60 м. Детектирующим матери-
алом (радиатором) является вольфрамат свинца 
PbWO4 с радиационной длиной 0.89 см и вели-
чиной радиуса Мольера 2.19 см. Поскольку све-
товыход кристалла имеет температурную зави-
симость 1.9% / °C при комнатной температуре 
и растет с понижением температуры, для увели-
чения световыхода кристаллы охлаждают до тем-
пературы –25 °C, при этом нестабильность тем-
пературы не должны превышать 0.1 °C.

В ФОС используются кристаллы с  разме-
рами 22×22×180 мм3, ориентированные торцами 

22×22 мм2 к потоку регистрируемого излучения. 
К противоположному торцу кристалла с помо-
щью специального оптического клея приклеен 
лавинный фотодиод (ЛФД) S8664-55 (HAMA-
MATSU) с размером окна 5х5 мм2. ЛФД припаян 
к плате, на обратной стороне которой находится 
зарядочувствительный предусилитель (ЗЧП). 
Непрозрачные стенки ячеистых структур,  в 
которых располагаются фотодетекторы, исклю-
чают перерассеивание света между кристаллами.

Сигналы с  выхода ЗЧП поступают на  вход 
карты измерительной электроники (КИЭ,  в 
англоязычной научной литературе использу-
ется сокращение FEC, Front End Card). КИЭ 
производит оцифровку формы импульсов. При 
офлайн-обработке полученных кодов опреде-
ляются энергия зарегистрированных частиц 
и  время их  пролета, которое используется для 
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времени пролета для лучшей идентификации регистрируемых частиц. Существующая КИЭ ФОС 
не отвечает новым требованиям и должна быть заменена по плану модернизации ФОС. Улучше-
ние измерительных характеристик КИЭ ФОС достигается за счет аппаратного измерения времени 
пролета вместо oфлайн-обработки кодов оцифровки формы сигнала фотодетектора. Прототип 
КИЭ содержит восемь измерительных каналов и все функциональные блоки, необходимые для 
работы в ФОС. Приведено описание функциональных блоков. Представлены результаты изме-
рений характеристик прототипа КИЭ в лаборатории и на электронной компоненте вторичных 
пучков частиц протонного синхротрона PS в ЦЕРНе в диапазоне импульсов от 1 до 10 ГэВ / с. По 
полученным результатам сделан вывод, что прототип КИЭ полностью соответствует требованиям 
к КИЭ модернизированного ФОС. На основе данной конструкции начата разработка полномас-
штабной КИЭ ФОС на 32 измерительных канала.
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идентификации прямых фотонов из массы заре-
гистрированных ФОС частиц.

Проектирование прототипов КИЭ ФОС нача-
лось в 2002 г., и на тот момент необходимо было 
обеспечить измерение энергии до 100 ГэВ с отно-
сительной ошибкой σ/Е для энергий 1–2  ГэВ 
не хуже 4% и время пролета с ошибкой 2 нс.

Для измерения характеристик на  тестовом 
пучке SPS (CERN) было разработано два про-
тотипа КИЭ: прототип TDC  [2] и  прототип 
ALTRO [3]. Они различались методом измерения 
энергии и времени пролета.

Прототип TDC содержал два канала изме-
рений  – энергии и  времени пролета. Энергия 
измерялась запоминанием амплитуды сигнала, 
сформированного фильтром первого порядка 
с постоянной времени 1 мкс и последующей оциф-
ровкой 12-битовым АЦП. Время пролета измеря-
лось способом Старт–Стоп. Канал содержал 
компаратор для выработки временной отметки 
Старт от  сигнала с  выхода ЗЧП и  время-циф-
рового преобразователя (ВЦП). Сигналом Стоп 
являлся триггерный сигнал от СТР (Central Trigger 
Processor), который в эксперименте ALICE при-
ходит с задержкой 1200 нс относительно события. 
Таким образом каждое событие характеризовалось 
двумя кодами – энергией и временем пролета.

Прототип ALTRO разработан с  исполь-
зованием специализированной микросхемы 
ALTRO [4], которая содержит 16 АЦП и цифровые 
схемы формирования кодов. Принцип работы 
прототипа основан на непрерывной оцифровке 
сигналов от ЗЧП, прошедших через спектроме-
трический фильтр второго порядка с постоянной 
времени 1 мкс, с частотой дискретизации 10 МГц 
и точностью квантования 10 битов. После при-
хода триггера с  задержкой 1200  нс  от начала 
события в  память записываются последние 40 
отсчетов. При офлайн-обработке накопленных 
данных, которая заключается в восстановлении 
формы сигнала фитированием функцией Гаусса 
полученных отсчетов, определяется амплитуда 
сигнала, пропорциональная энергии частицы. 
Время пролета определяется по положению мак-
симума восстановленного сигнала на  времен-
ной шкале. Результаты измерений прототипов 
на пучке для энергии 1 ГэВ:

– относительное энергетическое разрешение 
приблизительно одинаковое, (4±0.2) %,

– временное разрешение для прототипа TDC 
составляет 0.6 нс, для прототипа ALTRO равно 
2–3 нс.

Принимая во внимание измеренные характе-
ристики прототипов, время на проектирования 
полномасштабной КИЭ для ФОС и стоимость 
изготовления карт, было принято решение взять 
за  основу прототип ALTRO. Разработка КИЭ 
ФОС была закончена в 2005 г. [3, 5].

ФОС состоит из 12 544 фотодетекторов, рас-
положенных в  четырех модулях. Один модуль 
содержит 112 КИЭ. Каждая карта подключена 
к  32 фотодетекторам. Поскольку динамиче-
ский диапазон измеряемых энергий составляет 
80 000 МэВ / 5 МэВ = 16 000, а АЦП имеет только 
1000 уровней квантования, используются два 
канала с отношением усилений, равным 16.

КИЭ ФОС содержит 64 спектрометрических 
усилителя с высоким и низким усилениями, 32 
регулятора напряжения смещения для лавинных 
фотодиодов, 4 многофункциональные микро-
схемы ALTRO, 8 суммирующих усилителей, фор-
мирующих сигналы для триггера L0, блок управ-
ления, выполненный на  ПЛИС,  и источники 
стабилизированного питания. КИЭ представляет 
собой печатную плату с размером 210×359 мм2, 
которая содержит 10 слоев. Многослойная кон-
струкция платы объясняется необходимостью 
минимизировать наводки от  цифровых схем 
на аналоговые. Для этой же цели используются 
отдельные источники питания для аналоговых 
и цифровых схем. Рассеиваемая мощность всех 
микросхем, расположенных на  плате, равна 
5.6 Вт. Поскольку платы находятся в закрытом 
объеме корпуса модуля, используется водяное 
охлаждение. Вода проходит через медные трубки, 
припаянные к  медным экранам, которые кре-
пятся по обе стороны платы.

В описанной выше конфигурации ФОС при-
нимает участие уже в трех измерительных перио-
дах (Run 1, 2, 3) на Большом адронном коллайдере 
(LHC), начиная с 2009 г. В процессе накопления 
и  обработки данных сформулированы новые 
требования к  измерительным характеристи-
кам ФОС КИЭ: повышение точности измере-
ния энергии и  времени пролета  [6], которые 
невозможно выполнить с  существующей КИЭ 
с разрешением 10 битов по амплитуде и часто-
той дискретизации 10 МГц. Дополнительно это 
приводит к тому, что нельзя осуществить при-
вязку зарегистрированной частицы к конкрет-
ному пересечению пучков, которое происходит 
с частотой 40 МГц.

Что касается временного разрешения, то по 
полученным данным оно значительно хуже, чем 
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измеренное с  прототипом ALTRO. Временное 
разрешение уменьшается с ростом энергии кла-
стера, оно имеет ступеньку при E ≈ 6 ГэВ, когда 
каналы с высоким усилением достигают насы-
щения и время измеряется по сигналам в кана-
лах с низким усилением. КИЭ ФОС позволяет 
достичь временного разрешения около 2 нс при 
E = 5 ГэВ, но оно быстро ухудшается при более 
низкой энергии, что делает невозможным иден-
тификацию фотонов по  времени пролета при 
одновременной регистрации нейтронов и пио-
нов  [6]. Например, для энергии 1 ГэВ времен-
ное разрешение составляет уже 8 нс, для срав-
нения при измерении прототипа ALTRO было 
получено разрешение примерно 2  нс. Ухудше-
ние временного разрешения можно объяснить 
шумами и наводками при формировании такто-
вой частоты 10 МГц из частоты синхронизации 
LHC 40 МГц, что приводит к фазовым сдвигам 
тактовых импульсов и размытию их положения 
по времени (джиттер).

Причины модернизации существующей КИЭ 
ФОС и  требования к  новой КИЭ формулиру-
ются следующим образом:

– увеличение максимальной измеряемой 
энергии с 100 до 200 ГэВ;

– повышение светимости пучков LHC и, как 
следствие, увеличение скорости счета в измери-
тельных каналах с 8 до 50 кГц;

– уменьшение мертвого времени при чтении 
данных с 200 мкс до 50 мкс;

– необходимость повысить точность измере-
ния времени пролета с 8 до 0.5 нс для энергии 
1 ГэВ;

– старение элементной базы существующей 
КИЭ.

Увеличение скорости счета и  расширение 
динамического диапазона позволят полностью 
воспользоваться высокой гранулированностью 
ФОС и  выполнить ряд измерений, таких как 
измерение спектров идентифицированных ней-
тральных пионов, эта- и омега-мезонов и пря-
мых фотонов с поперечными импульсами, боль-
шими 50–100 ГэВ, а также изучить корреляции 
этих частиц.

2. ОПИСАНИЕ БЛОК-СХЕМЫ  
ПРОТОТИПА ФОС КИЭ

Для уменьшения расходов на  проектирова-
ние и изготовление прототипа КИЭ разработана 
КИЭ, содержащая 8 входных каналов для измере-
ния энергии и времени пролета, но при этом карта 
содержит все необходимые блоки для работы 
в ФОС. Такой вариант позволяет отработать схемы 
решений и проверить их на тестовом пучке.

Функциональная блок-схема КИЭ показана 
на рис. 1. Разъем Р1 служит для соединения КИЭ 
с  8-канальной сборкой фотодетекторов. Для 
измерения энергии частиц используются блок 
спектрометрических усилителей (СУ) и  АЦП. 
Измерение времени пролета осуществляется 
формирователями временной метки (ФВМ) 
и  время-цифровым преобразователем (ВЦП). 
Блок напряжений смещения (БНС) формирует 
индивидуальные напряжения для ЛФД из напря-
жения 400 В, которое поступает на Р6. Контрол-
лер карты (КК) принимает команды от системы 
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сбора данных и  управляет работой всех бло-
ков. Через Р2 передаются триггерные сигналы. 
Через Р3 передаются сигналы в стандарте JTAG 
для конфигурирования КК. Блок USB является 
интерфейсом для связи КИЭ с  управляющим 
компьютером через Р4. Блок питания (БП) выра-
батывает необходимые низковольтные напряже-
ния питания для КИЭ и ЗЧП.

Далее приводятся технические требования 
к функциональным блокам и описания их прин-
ципиальных схем.

2.1. Блок спектрометрических усилителей  
и АЦП

Энергия частицы пропорциональна ампли-
туде сигнала на выходе ЗЧП [7]. Параметры сиг-
нала на выходе ЗЧП для ЛФД 5×5 мм2 S8664-55 
(HAMAMATSU) при –25 °С таковы:

– амплитуда: 35 мВ для энергии 1 ГэВ,
– форма сигнала: время нарастания 30–40 нс 

(зависит от  места попадания частицы в  кри-
сталл), постоянная времени спада 100 мкс.

Динамический диапазон измеряемых энер-
гий можно оценить, учитывая, что в кристалле 
остается 80% энергии регистрируемой частицы. 
Тогда при максимальной энергии 200 ГэВ в кри-
сталле остается 160  ГэВ,  а динамический диа-
пазон составит 160  ГэВ / 4  МэВ = 40000, что 
потребует использования 16-разрядного АЦП. 
Необходимо также учесть, что наиболее вероятна 
регистрация частиц до 10 ГэВ. Для уменьшения 
разрядности АЦП диапазон измерений разбива-
ется на два поддиапазона, которые различаются 
усилением – высоким и низким. Предлагается 
использовать 12-разрядный АЦП, тогда диапазон 
энергий, измеряемый в канале с высоким усиле-
нием, составляет от 2 МэВ до 8 ГэВ, а в канале 
с низким усилением – от 40 МэВ до 160 ГэВ [6].

Таким образом, на  карте располагается 16 
каналов измерения энергии – 8 каналов с низ-
ким усилением и  8 каналов с  высоким усиле-
нием. Каждый канал содержит фильтр и буфер-
ный усилитель с  дифференциальным выходом 
для соединения с  дифференциальным входом 
АЦП. Выходной сигнал ЗЧП проходит через 
фильтр, который повышает отношение сиг-
нал / шум и  формирует (определяет) форму 
импульса. Выбор порядка фильтра, т. е. количе-
ства каскадов интегрирования, которые он будет 
содержать, основан на анализе степени влияния 
различных искажающих факторов на энергети-
ческое разрешение спектрометра.

Относительное энергетическое разрешение 
электромагнитного калориметра можно описать 
формулой [8]
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где σ  – ошибка измерения энергии, Е  [ГэВ]  – 
энергия частицы, зарегистрированной в калори-
метре, a – вклад электронных шумов, b – сто-
хастический член, с  – константа. Константа 
с  показывает, что энергетическое разрешение 
спектрометра не  может быть меньше ее  вели-
чины при сколь угодно большой энергии.

Флуктуация световыхода кристалла вносит 
свой вклад в величину коэффициента b. Темпе-
ратурная зависимость световыхода вносит свой 
вклад в величину с.

Если в качестве фотодетектора используется 
ЛФД, то его параметры вносят вклад во все члены 
под корнем в формуле (1). В величину а входят 
шумы, вызванные паразитной емкостью ЛФД, 
темновым током и последовательным резисто-
ром смещения ЛФД. Величина b  определяется 
площадью и квантовой эффективностью ЛФД, а 
также флуктуацией коэффициента умножения, 
которая учитывается с помощью коэффициента 
избыточного шума (Excess Noise Factor). В кон-
станту с  ЛФД вносит вклад из-за чувствитель-
ности коэффициента усиления к  изменениям 
температуры, напряжения смещения и радиаци-
онных повреждений.

Тогда формула (1) для относительного энерге-
тического разрешение для одного канала фото-
детектора принимает вид [9]
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где σCSP – электронные шумы системы ЛФД – 
ЗЧП, выраженные в  эквивалентных шумовых 
зарядах; M – коэффициент усиления ЛФД; N0 – 
количество первичных электронов, образован-
ных в ЛФД при регистрации частицы с энергией 
Е; σI – величина радиочастотных шумов и наво-
док, выраженная в  эквивалентных шумовых 
зарядах; F  – коэффициент избыточного шума 
ЛФД; Xtal  = 0.036  – стохастический член для 
PWO; c = 0.011.

Значения Xtal и  c взяты из  работы  [7]. Кон-
станта с получена фитированием кривой энер-
гетического разрешения, измеренного на пучке 
заряженных частиц.
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В результате расчетов по формуле (2) и изме-
рений выбраны оптимальные параметры ЛФД 
и СУ:

– коэффициент усиления ЛФД М = 100; это 
увеличивает отношение сигнала к наводке, кото-
рая присутствует на  линиях связи ЛФД–ЗЧП, 
и,  с другой стороны, уменьшает усиление СУ, 
необходимое для согласования амплитуды сиг-
нала со входом АЦП, что уменьшает шумы пье-
десталов;

– показано, что электронные шумы имеют 
наименьшее влияние на энергетическое разре-
шение, и поэтому в качестве фильтра достаточно 
использовать фильтр первого порядка (1 каскад 
дифференцирования и 1 каскад интегрирования) 
для формирования полосы пропускания, требу-
емой для подавления шумов и  наводок; такой 
фильтр упрощает схемотехнику, что уменьшает 
затраты на компоненты по сравнению, напри-
мер, с фильтром второго порядка существующей 
ФОС КИЭ; постоянная формирования фильтра 
1 мкс позволяет снизить вероятность наложений.

Графики расчетных значений, отражаю-
щие вклад шумов электроники, избыточных 
шумов ЛФД, стохастического шума кристалла 

и  постоянного члена в  энергетическом разре-
шении спектрометра при перечисленных выше 
параметрах ЛФД и ЗЧП при Т = –25 °С, пока-
заны на рис. 2. Ниже энергии величиной 6 ГэВ 
преобладающим является стохастический шум 
кристалла. Выше этой величины преоблада-
ющим становится вклад от  константы. Также 
на график нанесены величины энергетического 
разрешения, измеренные на пучках электронов 
при испытаниях одного модуля ФОС в ЦЕРНе. 
Видно хорошее согласие расчетных и экспери-
ментальных данных.

На рис.  3 показана принципиальная схема 
одного измерительного канала СУ, который 
состоит из  канала высокого и  канала низкого 
усилений. Схема СУ выполнена на одной микро-
схеме MAX4454, содержащей 4 операционных 
усилителя (ОУ). Вход СУ соединен со входами 
двух фильтров У1 и У2 на ОУ. Дифференциро-
вание входного сигнала выполнено на C2R3 и на 
C3R5. Резисторы R1, R2 используются для компен-
сации полюса нулем. Отсутствие компенсации 
приводит к искажению формы импульса в обла-
сти максимума и  к на  спаде при пересечении 
импульсом базовой линии, что может сместить 
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Рис. 2. Графики, отражающие вклад шумов электроники, избыточных шумов ЛФД, стохастического шума кристал-
ла и постоянного члена в энергетическое разрешение спектрометра при усилении ЛФД М = 100, фильтре первого 

порядка с постоянной времени 1 мкс и Т = –25 °С.
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базовый уровень из диапазона преобразования 
АЦП. Интегрирование осуществляется с помо-
щью C4R7 и C6R8. Усиление задается резисторами 
R3, R7 и  R5, R8. Максимальная амплитуда сиг-
нала на выходах фильтров 1 В. Величина пьеде-
стала задается опорным источником напряже-
ния +1.5 В.

В качестве АЦП используется параллельный 
(быстрый) преобразователь AD9637 (Analog 
Devices), который осуществляет непрерывную 
выборку входных сигналов с  частотой 40  МГц 
и преобразование в 12-разрядный код.

Синфазный выход фильтра должен быть 
согласован с дифференциальным входом АЦП, 
причем на одном выходе должен быть постоян-
ный уровень +0.5 В, и сигнал должен изменяться 
в  положительную сторону. На втором выходе 
должен быть постоянный уровень +1.5 В, и сиг-
нал должен изменяться в  отрицательную сто-
рону. Промышленность выпускает специальные 
ОУ с дифференциальными выходами, например 
AD8132, однако они не могут быть использованы 
в измерительной электронике ФОС из-за боль-
шой рассеиваемой мощности (порядка 50  мВт 
на один канал) и цены $1.84. Поэтому исследо-

вались другие решения. В разработанной схеме 
дифференциальный сигнал получается добав-
лением по одному инвертирующему усилителю 
в каждый канал: У3 и У4. На дифференциальных 
выходах канала с низким и с высоким усилением 
используются фильтры для обеспечения про-
хождения сигналов наводок с “земляной” шины 
через конденсаторы С10…С13 на дифференциаль-
ные входы АЦП, где они вычитаются. Введение 
фильтров уменьшило RMS пьедесталов с  2.3 
до 0.6 отсчетов АЦП. Для одного ОУ, входящего 
в микросхему MAX4454, рассеиваемая мощность 
составляет 3мВт, а цена – $0.3.

Постоянные уровни на  дифференциальных 
входах АЦП формируются подачей постоянных 
напряжений +1.5 и  +0.5  В на  неинвертирую-
щие входы ОУ. Настройка пьедесталов, которые 
должны иметь величину 50±10 отсчетов АЦП, 
происходит путем изменения величины +1.5 В.

2.2. Блоки ФВМ и ВЦП

Время пролета определяется расположением 
ФОС относительно точки взаимодействия, для 
различных частиц оно составляет от 15 до 17 нс. 
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Рис. 3. Принципиальная схема одного измерительного канала СУ. НУ – дифференциальный выход канала с низким 
усилением. ВУ – дифференциальный выход канала с высоким усилением.
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Ошибка измерения (сигма) для частиц с энер-
гией 1–2 ГэВ не должна превышать 0.5 нс.

Время регистрации частицы определяется 
по сигналу на выходе формирователя временной 
метки (рис. 4), который состоит из фильтра и ком-
паратора с  регулируемым порогом. Порог для 
каждого канала устанавливается индивидуально.

Сигнал с  выхода ЗЧП поступает на  вход 
схемы формирования входного сигнала, кото-
рая состоит из  дифференцирования на  С1R3 
и  интегрирования на  R1С3, одновременно С3 
блокирует срабатывания компаратора от корот-
ких импульсных помех, которые присутствуют 
на линиях связи ЗЧП-КИЭ. Пороговое напря-
жение подается на инвертирующий вход компа-
ратора ADCMP604BKSZ (Analog Devices) через 
делитель R2R4. Сигнальный вход компаратора 
защищен от перенапряжения диодной сборкой 
BAV99. Компаратор обеспечивает задержку рас-
пространения 1.5  нс  со среднеквадратичным 
случайным джиттером 1 пс. Время нарастания 
выходных импульсов составляет 600 пс, разброс 
времени переключения в зависимости от ампли-
туды и скорости нарастания входного импульса 
не превышает 50 пс. Выходные сигналы диффе-
ренциальные в стандарте LVDS.

Пороги формируются ЦАП MAX5308, кото-
рый содержит 8 ЦАП с преобразованием 10-раз-
рядного кода в  максимальное напряжение 5  В. 
Коды хранятся в регистрах КК и переписываются 
в ЦАП по шине SPI при включении питания.

Для преобразования временного интер-
вала в цифровой код используется микросхема 
HPTDC, которая была специально разработана 
для времяпролетных детекторов, участвующих 
в экспериментах на LHC [10, 11].

На тактовый вход ВЦП поступает сиг-
нал синхронизации LHC c  частотой 40  МГц. 
Встроенный PLL (фазовая автоподстройка 
частоты) генерирует внутренние опорные сиг-
налы с  частотами 320, 160, 80 и  40  МГц. ВЦП 
может работать в режиме высокого разрешения 
с шириной канала (ошибкой измерения) 98 пс, 
среднего разрешения с шириной канала 195 пс 
и низкого разрешения с шириной канала 781 пс. 
Во всех этих режимах ВЦП может работать с 32 
входными каналами. Также есть режим очень 
высокого разрешения с шириной канала 24 пс, в 
котором можно работать только с  8 входными 
каналами.

Синтезированный PLL сигнал подается 
на  входы DLL (система автоматической под-
стройки задержки) и  “грубого” 15-разрядного 
счетчика. “Грубый” счетчик непрерывно инкре-
ментируется по сигналам опорной серии. Когда 
сигнал временной метки приходит на  один 
из измерительных входов ВЦП, формируется код 
времени регистрации, старшие разряды в кото-
ром определяются значением “грубого” счетчика 
в момент регистрации сигнала, а младшие 5 разря-
дов определяются по сигналам DLL. Таким обра-
зом, HPTDC не является старт-стоповым ВЦП, и 
все его измерительные каналы эквиваленты.

HPTDC может работать в триггерном и бест-
риггерном режимах. В  бестриггерном режиме 
ВЦП формирует и выдает на выход коды на каж-
дый зарегистрированный сигнал на  измери-
тельном входе. В  триггерном режиме на  каж-
дый триггерный сигнал (сигнал, поданный 
на специальный триггерный вход) формируется 
посылка, состоящая из служебной информации 
и  всех кодов входных сигналов, зарегистриро-
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Рис. 4. Принципиальная схема формирователя сигнала временной метки.
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ванных в заданном временном интервале перед 
триггерным сигналом. ВЦП позволяет задавать 
временной интервал, в котором события счита-
ются полезными (Matching window) и попадают 
в  событие и  время, на  которое будет задержан 
триггер (Trigger latency).

Реальная ФОС КИЭ имеет 32 входных измери-
тельных канала, поэтому на разработанной КИЭ 
HPTDC работала в  режиме высокого разреше-
ния – 32 входных канала с шириной канала 98 пс.

В эксперименте на  тестовых пучках триг-
герный сигнал формируется стартовым счет-
чиком и поступает на обработку примерно в то 
же время, что и сигналы с измерительных кана-
лов. Поэтому для правильной работы HPTDC 
в  триггерном режиме этот сигнал подается 
на измерительный вход ВЦП и в ПЛИС. ПЛИС 
формирует триггерный сигнал для HPTDC, 
синхронный с  входным сигналом и  задержан-
ный на  необходимое время,  а также запускает 
логику формирования события. В реальном экс-
перименте триггерным сигналом будет сигнал 
от детектора на взаимодействие ALICE/Т0.

Считывание данных с HPTDC осуществляется 
по параллельному 32-разрядному интерфейсу.

2.3. Блок формирования напряжения смещения

Формирование триггера на  суммарную 
выделенную энергию (суммирование сигна-
лов матрицы детекторов размером 5×5) требует 
аппаратурного согласования коэффициентов 
преобразования измерительных каналов не хуже 
4%. Кристаллы вольфрамата свинца имеют раз-
брос световыхода около 30%, коэффициент уси-
ления М при одном и том же напряжении сме-
щения для разных ЛФД имеет разброс около 
20%. Необходимо также учитывать прозрачность 
оптического слоя между кристаллом и ЛФД, что 
влияет на  величину светового потока, попада-
ющего на  ЛФД. Согласование коэффициен-
тов преобразования каналов возможно только 
на  пучке, когда все элементы детектирующего 
канала принимают участие в образовании сиг-
нала. Согласование достигается путем изменения 
коэффициента усиления ЛФД при изменении 
напряжения смещения. Напряжение смещения 
на ЛФД изменяется до тех пор, пока пик ампли-
тудного распределения не сместится в заданный 
канал. Преимуществом этого способа является 
отсутствие этапа предварительного отбора кри-
сталлов и ЛФД при установке их в модуль.
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Рис. 5. Принципиальная схема блока формирователя напряжения смещения.
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Параметры формирователя напряжения сме-
щения для ЛФД должны удовлетворять следую-
щим требованиям:

– регулировка напряжения смещения в диа-
пазоне 200–400 В,

– минимальный шаг регулировки 0.2 В,
– шумы и пульсации на выходе формирова-

теля не более 25 мВ,
– выходной ток не более 0.1 мА,
– температурная нестабильность выходного 

напряжения не более 0.1% / °C,
– возможность выполнения команд управле-

ния от КК,
– сопротивление изоляции между высоко-

вольтными и низковольтными цепями не менее 
10 МОм,

– реализация схемы на  компонентах для 
поверхностного монтажа.

Принципиальная схема разработанного блока 
показана на  рис. 5. Задание индивидуальных 
напряжений смещения осуществляется через 
8-канальный 10-разрядный ЦАП MAX5308, 
который управляется КК через шину SPI. Фор-
мирователь выходного напряжения представляет 
собой регулятор напряжения, изолированный 
от  выхода с  помощью оптоэлектронной пары 
КРС452. Таким образом осуществляется изоля-
ция напряжения 400 В от низковольтных цепей 
регулирования. На резисторах R2, R3 происхо-
дит суммирование напряжений от  референс-
ного источника +5 В и выходного напряжения 
ЦАП. Если на  ЦАП подан нулевой код, то  на 
выходе ЦАП формируется нулевое напряже-
ние, в результате на неинвертирующий вход ОУ 
подается напряжение +2.5 В, а на выходе фор-
мирователя появляется напряжение +200  В. 
Если на ЦАП подается максимальный код, то на 
выходе блока формируется напряжение +400 В.

Разработанная схема формирователя полно-
стью удовлетворяет перечисленным выше требо-
ваниям и имеет высокую надежность, например, 
отключение напряжения +5 В при включенном 
питании 400 В не выводит ее из строя.

2.4. Блок интерфейса

Блок интерфейса предназначен для связи 
КИЭ с системой медленного контроля и сбора 
данных. В  настоящее время ФОС использует 
стандарт Р2Р [6]. Для отладки встроенного про-
граммного обеспечения и тестовых испытаний 
на  пучке предусмотрен интерфейс стандарта 

USB, выполненный на микросхеме FT245RL, – 
двунаправленный преобразователь USB / FIFO.

2.5. Контроллер карты

Контроллер карты выполняет следующие 
функции:

– управление ЦАП установки порогов дис-
криминации и напряжения смещения лавинных 
фотодетекторов;

– сбор данных с АЦП и ВЦП;
– формирование и  передача данных в  про-

грамму сбора данных по приходу сигнала триг-
гера L0.

Контроллер карты выполнен на  ПЛИС 
5CEBA7F23C8 серии Cyclone V фирмы Intel 
(Altera). ПЛИС этой серии были выбраны, 
поскольку, с одной стороны, эти микросхемы, в 
отличие от  микросхем младших серий, содер-
жат встроенные десериализаторы, с другой сто-
роны, для работы с ПЛИС этой серии, в отличие 
от микросхем старших серий, можно использо-
вать Quartus Prime Lite, не требующий платной 
лицензии. Амплитудный канал КИЭ построен 
на основе конвейерных 12-разрядных 8-каналь-
ных микросхем АЦП с последовательным выхо-
дом и частотой преобразования до 40 МГц. Это 
значит, что на входы ПЛИС данные будут посту-
пать на частоте 480 МГц. На таких частотах при-
менение встроенных десериализаторов значи-
тельно упрощает процесс разработки.

Структура прошивки ПЛИС приведена 
на  рис.  6. Коды с  выходов АЦП поступают 
на  8-канальный встроенный десериализатор 
с коэффициентом 6 (8xDESER). На выходе десе-
риализатора формируются 48-битовые слова 
с частотой 80 МГц (первые 6 бит – нулевой канал, 
следующие 6 битов – первый канал и т. д.). Эти 
данные поступают на модуль DS2, который фор-
мирует восемь 12-разрядных слов для каждого 
канала. По положительному перепаду импульса 
тактовой частоты 40 МГц (FCO) записываются 
6 старших битов, по отрицательному – 6 млад-
ших. Таким образом, на выходе блока DS2 форми-
руются коды амплитуд для каждого измеритель-
ного канала с частотой 40 МГц. Далее эти данные 
поступают на сдвиговый регистр ShRegData.

Поскольку длительность сигнала (примерно 
8 мкс по уровню 1%) на входе АЦП превышает 
задержку сигнала L0 1.2 мкс, сигнал записи дан-
ных в  выходные регистры необходимо задер-
жать на разницу между длительностью импульса 
на входе АЦП и задержкой сигнала L0. Для этого 
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сигнал L0 поступает на  сдвиговый регистр 
ShRegL0, который формирует необходимую 
цифровую задержку. Выходной сигнал ShRegL0 
переписывает данные из  сдвигового регистра 
ShRegData в регистр событий Ch#_REG. Также 
выходной сигнал ShRegL0 устанавливает триг-
гер LAM, сообщая управляющему компьютеру 
о готовности данных для считывания.

Модуль TDC_READ предназначен для считы-
вания информации с временного кодировщика 
HPTDC. Он передает сигнал L0 в HPTDC и ждет 
сигнала data_ready от него. По приходу сигнала 
data_ready модуль TDC_READ начинает счи-
тывание данных из  буфера HPTDC и  записы-
вает в регистры события наименьшие значения 
для каждого измерительного канала (8 входных 
каналов + 1 опорный).

Для предотвращения перемешивания данных 
от разных событий сигнал LAM блокирует про-
хождения сигнала L0. Триггер LAM может быть 
сброшен командой системы управления, запу-
щенной на компьютере.

Модуль TDC_JTAG предназначен для записи 
в регистры HPTDC кодов конфигурации.

Модули SPI_HV и SPI_TH управляют микро-
схемами ЦАП, устанавливающими напряжения 
смещения на  ЛФД и  пороги дискриминации 
во временном канале.

Модуль USB FSM предназначен для обмена 
данными с микросхемой FT245 (FTDI), дешиф-
рации поступающих от  системы управления 
команд и их выполнения.

Изначально файлы конфигурации HPTDC 
и  ЦАП хранятся на  управляющем компьютере 
и  записываются в  соответствующие регистры 
КК в начале измерений.

2.6. Блок низковольтных источников питания

Применяются отдельные источники питания 
для аналоговых и цифровых схем, что уменьшает 
влияние цифровых помех на  аналоговые сиг-
налы. В качестве источников питания использу-
ются линейные регуляторы с низким падением 
напряжения (LDO). Поскольку КИЭ ФОС рабо-
тает в магнитном поле, запрещено использовать 
импульсные источники питания с дросселями. 
По той же  причине запрещено использовать 
дроссели в фильтрах питающего напряжения.

2.7. Компоновка платы прототипа КИЭ

Размеры платы 180×210 мм2, что составляет чет-
вертую часть существующей карты ФОС при рас-
положении компонент на обеих сторонах платы.

Используется один полигон заземления GND. 
Плата делится на аналоговую и цифровую части 
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Рис. 6. Блок-схема программы ПЛИС.
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для исключения взаимного влияния возвратных 
токов этих частей друг на  друга. Это наклады-
вает ограничения на размещение компонентов 
и  трассировку проводников: аналоговые ком-
поненты и  проводники располагаются только 
на аналоговой части платы и наоборот.

Все компоненты аналоговой части распола-
гаются на одной стороне платы. Такое располо-
жение объясняется тем, что данный прототип 
является 8-канальным, в то время как реальная 
карта должна содержать 32 канала. Это требует 
расположить 16 каналов на одной стороне платы 
и 16 каналов на другой возле соответствующих 
входных разъемов. Одна из целей прототипа – 
получить разводку как можно ближе к  полно-
масштабной карте. Поэтому вариант располо-
жения спектрометрических усилителей на одной 
стороне платы, а компараторов на другой, хотя 
и имеет явные преимущества за счет сокращения 
длины соединительных проводников с контак-
тами входного разъема, не может быть реализо-
ван, так как полученная разводка не может быть 
перенесена на реальную плату.

Назначения напряжений питания, которые 
поступают на плату через разъем XP2, таковы:

+2.5VA – питание АЦП,
+13VA, –6VA – питание ЗЧП,
+6VA – питание спектрометрических усили-

телей и компараторов,
+4VD – питание ПЛИС и HPTDC.
Полигоны напряжений питания и  земли,  а 

также разводка контактов на  XP2 показаны 
на рис. 7. Проводящие слои располагаются сле-

Analog Digital

+4VD

+2.5VA

+13VA

+6VA

−6VA

GND

GND

GND

GND

XP2

дующим образом: Сигнал – Земля – Питание – 
Сигнал.

Требования к  разводке дифференциальных 
соединений: волновое сопротивление 100  Ом, 
дорожки выравниваются по длине.

На рис. 8 показан вид смонтированной платы 
в процессе ее настройки в лаборатории.

Рис. 7. Схема расположения полигонов на плате.

Рис.  8. Вид смонтированной платы прототипа  
КИЭ ФОС.

3. ИЗМЕРЕНИЕ ХАРАКТЕРИСТИК 
ПРОТОТИПА ФОС КИЭ

3.1. Лабораторные исследования характеристик 
прототипа КИЭ

Для настройки и  измерения характеристик 
КИЭ разработана система с  использованием 
системы сбора данных общего назначения для 
малых и средних экспериментов MIDAS (Max-
imum Integrated Data Acquisition System)  [12], 
стандартной библиотеки Linux libusb-1.0 и про-
граммы представления данных Root [13].

Параметры КИЭ, измеренные в лаборатории, 
таковы:

– рассеиваемая мощность 4 В × 0.87 А + 2.5 В × 
× 0.64 А + 6 В × 0.17 А = 6.1 Вт,

– средние значения пьедесталов и  сигма 
шумов в отсчетах АЦП в каналах НУ равны 50.5 
и 0.46 соответственно, в каналах ВУ 63.6 и 0.48 
соответственно (на рис.  9 представлена гисто-
грамма оцифрованного сигнала, на которой пер-
вые 24 выборки являются пьедесталом в данном 
измерительном канале),

– интегральная нелинейность – 0.8 LSB, диф-
ференциальная нелинейность – 0.6 LSB.



37

ПРИБОРЫ И ТЕХНИКА ЭКСПЕРИМЕНТА        № 2        2025

МОДЕРНИЗАЦИЯ ИЗМЕРИТЕЛЬНОЙ ЭЛЕКТРОНИКИ ФОТОННОГО СПЕКТРОМЕТРА

Проверка работы блоков установки порогов 
и  смещения ЛФД осуществлялась следующим 
образом:

– значения порогов и высокого напряжения 
устанавливались согласно значениям в соответ-
ствующих файлах hv.dat и thres.dat,

– калибровка для порога компаратора во вре-
менном канале 2.44 мВ / отсчет,

– напряжение смещения ЛФД вычислялось 
по формуле

HV(out) = 0.2 В × CODE(decimal) + 204 В
(например, для значения кода 500 в  файле  

hv.dat получаем 0.2 В × 500 + 204 В = 304 В),
– измерение взаимных наводок канала 

на канал (кроссток).
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Рис. 10. Наводка в канале с высоким усилением (вход 1) от сигнала 7 В (200 ГэВ) на входе канала 8.

Рис.  11. Наводка в  канале с  высоким усилением 
(вход 7) от сигнала 7 В (200 ГэВ) на входе канала 8.

На один из входов подавался сигнал от генера-
тора и измерялись паразитные импульсы в дру-
гих каналах. На вход канала 8 подавался сигнал 
амплитудой 7 В от генератора, что эквивалентно 
регистрации частицы с энергией 200 ГэВ, осталь-
ные входы были соединены с  землей. Помехи 
измерялась на выходе каналов с высоким усиле-
нием. На рис. 10 показана форма наводки в пер-
вом канале, амплитуда которой составила 0.3 
отсчета, что равно коэффициенту прохождения 
0.3/3900 = 7.7 ∙ 10–5. На рис. 11 показана форма 
наводки в седьмом канале, амплитуда которой 
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составила 1.8 отсчета, что равно коэффициенту 
прохождения 1.8/3900 = 4.6 ∙ 10–4.

Калибровка временного канала – 99.4 пс / отсчет.

3.2. Измерения характеристик прототипа КИЭ 
на пучке PS (ЦЕРН)

Измерения проведены на электронной ком-
поненте вторичных пучков частиц протонного 
синхротрона PS в ЦЕРНе в диапазоне импульсов 
от 1 ГэВ / с до 10 ГэВ / с.

3.2.1. Согласование коэффициентов преобра-
зования. Процедура согласования проводилась 
на пучке электронов с энергией 1 ГэВ (рис. 12). 
Для каждого канала измерялась зависимость 
положения пика от  напряжения смещения 
на ЛФД равного 320, 340, 360, 380, 395 В. Полу-
ченные данные обрабатывались, определялось 
напряжение смещения, для которого ампли-
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Рис.  12. Распределение коэффициентов преобра-
зования в измерительных каналах до (а) и после (б) 

процедуры согласования.

туда сигнала при регистрации частицы 1  ГэВ 
попадала в  200-й канал. Для случая, представ-
ленного на рис. 12 а, когда на все каналы подано 
одно и тоже напряжение смещения, отношение 
RMS / Mean составляло 34%, после выравнива-
ния (рис. 12 б) – 2.6%.

3.2.2. Относительное энергетическое разреше-
ние. Относительное энергетическое разрешение 
вычисляется как отношение ΔЕ к величине изме-
ренной энергии Е. Энергия определялась по сиг-
налам от  фотодетекторов в  матрице 3×3 при 
попадании частиц в центральный фотодетектор 
матрицы. Процедура определения относитель-
ного энергетического разрешения при энергии 
Е описана в  работе  [14]. В  табл. 1 приведены 
данные по  относительному энергетическому 
разрешению прототипа КИЭ. Для сравнения 
в третьей строке табл. 1 приведена зависимость 
относительного энергетического разрешения 
от энергии для существующей КИЭ ФОС. Про-
тотип КИЭ имеет лучшее разрешение по сравне-
нию с КИЭ ФОС, особенно в диапазоне энергий 
меньше 5 ГэВ.
Таблица 1. Относительное энергетическое разреше-
ние при температуре − 25°С

Е, ГэВ 1 2 3 4 5 7 9 10

Прототип 
КИЭ*, % 3.3 2.2 1.9 1.7 1.6 1.5 1.3 1.3

КИЭ 
ФОС**, % 3.9 2.8 2.3 2.1 2 1.7 1.6 1.6

* Параметры прототипа КИЭ: усиление ЛФД М = 100, СУ 
с фильтром первого порядка с постоянной времени 1 мкс, 
12-битовый АЦП с частотой 40 МГц.
** Параметры КИЭ ФОС: усиление ЛФД М = 50, СУ 
с фильтром второго порядка с постоянной времени 1 мкс, 
10-битовый АЦП с частотой 10 МГц.

3.2.3. Измерение временного разрешения. 
За время пролета Т бралась разность между вре-
менем прихода триггерного сигнала L0 и време-
нем t превышения сигналом порога дискрими-
натора. Временной джиттер триггерного сигнала 
составляет 125 пс. Зависимость временного раз-
решения от энергии показана на рис. 13. На гра-
фике показаны данные после коррекции кодов 
времени на  амплитуду сигнала. Такая коррек-
ция возможна, так как одновременно с време-
нем пролета измеряются амплитуды сигналов. 
Процедура коррекции описана в работе [15]. Для 
энергии 1 ГэВ временное разрешение составляет 
0.37 нс.
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4. ЗАКЛЮЧЕНИЕ

Параметры разработанного прототипа КИЭ 
ФОС удовлетворяют всем требованиям, предъ-
являемым к  электронике электромагнитного 
калориметра, обеспечивая динамический диа-
пазон измерений энергий от 5 МэВ до 200 ГэВ 
с высокими значениями энергетического и вре-
менного разрешений. Результаты проверки КИЭ 
в лаборатории и тестовом пучке электронов PS 
(ЦЕРН) показали работоспособность выбран-
ной схемы КИЭ, что позволяет приступить 
к  разработке схемы и  изготовлению образца 
платы на 32 канала. Это будет выполнено мас-
штабированием испытанной платы на  8 кана-
лов и добавлением интерфейса взаимодействия 
с ALICE DAQ за счет добавления соответствую-
щего модуля в программу ПЛИС.
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Рис.  13. Зависимость временного разрешения 
от энергии частицы.
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