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1. ВВЕДЕНИЕ

Установка ИНЕС предназначена для измере-
ния сечений радиационного захвата нейтрона 
ядром на  импульсном источнике нейтронов 
РАДЭКС [1] центра коллективного пользования 
ИЯИ РАН. Установка дает возможность повы-
сить точность измерения сечений радиацион-
ного захвата нейтронов на ядрах по сравнению 
с существующим уровнем. Это имеет важное зна-
чение для ядерной астрофизики, ядерной транс-
мутации и для накопления актинидов в тепловых 
ядерных реакторах при длительной работе.

Сечения радиационного захвата нейтронов 
на  ядрах измеряются с  помощью времяпро-
летной (TOF) методики [2]. Установка состоит 
из восьми секций сцинтилляционных детекто-
ров γ-квантов  [3], мониторных 3He-счетчиков 
нейтронов  [4],  а также системы регистрации 
и обработки данных.

Для образования нейтронов импульсным 
протонным пучком в  нейтронном источнике 

РАДЭКС используется вольфрамовая мишень 
с  водяным охлаждением. Протонный пучок 
имеет энергию 267 МэВ, импульсный ток 5–7 мА, 
длительность 0.3 мкс, частоту импульсов 50 Гц. 
Энергия нейтронов определяется по  времени 
пролета, измеряемого многоканальным TDC-
кодировщиком с непрерывной записью сигналов 
от γ-детектора каждые 100 нс в течении 19.66 мс, 
который запускается синхроимпульсом про-
тонного пучка. Время пролета нейтрона T [мкс] 
определяется пролетной базой установки L  [м] 
и энергией нейтрона E [эВ] следующим образом: 
T = 72.3LE–1/2. Пролетная база установки L опре-
деляется расстоянием от мишени (W) источника 
до измеряемого образца и равна 49.4 м. Относи-
тельная погрешность в измерении энергии ней-
трона зависит от временной неопределенности 
δT и равна δE / E [%]= 2.77 E1/2 δT / L [2]. Основ-
ной вклад во  временную неопределенность δT 
вносит длительность протонного пучка равная 
примерно 0.3 мкс. Время пролета и относитель-
ная ошибка в измерении энергии для нейтрона 
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с энергией 100 эВ равны 357 мкс и 0.17% соответ-
ственно.

На рис. 1. приведено схематическое изобра-
жение времяпролетного спектрометра установки 
ИНЕС на  нейтронном канале N источника 
РАДЭКС. Протонный пучок P взаимодействует 
с охлаждаемой водой мишенью W. Две группы 
нейтронных 3Не-счетчиков расположены до  и 
после сцинтилляционного гамма-детектора 
Sc. Индукционный датчик тока (ID) измеряет 
форму импульса протонного пучка. Вакуумиро-
ванный канал V имеет длину 44 м.

Первая группа нейтронных 3Не-счетчиков 
предназначена для измерения энергии нейтро-
нов и состоит из четырех нейтронных счетчиков 
СНМ-18-1 [4]. Эти счетчики установлены перед 
сцинтилляционным гамма-детектором в  пучке 
нейтронов вне зоны образца диаметром 7 см так, 
чтобы не возмущать поток нейтронов, падающих 
на образец. Вторая группа счетчиков установлена 
после гамма-детектора, вблизи центральной оси 
пучка нейтронов и предназначена для измерения 
ослабления потока нейтронов за образцом. Для 
калибровочных измерений использовался обра-
зец из  золота (Au 99.99%) толщиной 1.065  мм 
и поперечным размером 44×44 мм2.

Нейтронные каналы источника РАДЭКС 
направленны на вольфрамовую мишень и распо-
ложены близко к оси протонного пучка. Поэтому 
в  каналы попадают первичные гамма-кванты 
и  высокоэнергетические нейтроны, образо-
ванные протонами в мишени. Энергетический 

спектр нейтронов простирается вплоть до мак-
симальной энергии, равной энергии протонов.

Сцинтилляционный детектор  [3] представ-
ляет собой полую тонкостенную (2 мм) алюми-
ниевую цилиндрическую камеру длиной 400 мм, 
диаметром 400 мм с общим объемом 40 литров, 
заполненную жидким сцинтиллятором. Диа-
метр полости равен 110  мм. Внутри камера 
делится на 8 независимых секций. Каждая сек-
ция просматривается фотодетектором ФЭУ-110, 
частично погруженным в  жидкий сцинтилля-
тор. Диаметр фотокатода равен 60 мм. Жидкий 
сцинтиллятор состоит из  толуола (С6Н5СН3) 
объемом 34.5 л, триметилбората В(ОСН)3 – объ-
емом 5.5 л с обогащенным (94%) изотопом бора 
10В и сцинтиллирующих добавок РРО и РОРОР 
весом 50 г. Оценка длин поглощения тепловых 
нейтронов ядрами водорода и бора в сцинтил-
ляторе дает величины 46 см и 0.34 см соответ-
ственно [3]. Таким образом, добавление метил-
бората позволяет эффективно,  в 135 (46/0.34) 
раз, подавить гамма-кванты с энергией 2.2 МэВ 
от  радиационного захвата фоновых нейтронов 
ядрами водорода в сцинтилляторе.

Электроника 8-секционного гамма-детектора 
и  8 нейтронных счетчиков, состоит из  зарядо-
во-чувствительного предусилителя и  усили-
теля-формирователя  [3]. Цифровые сигналы 
с  гамма-детектора (8 каналов) и  нейтронных 
счетчиков (8 каналов) поступают на 16-каналь-
ный временной кодировщик (TDC) с  USB-
интерфейсом с возможностью обработки циф-

P V

L = 49.4 m

d = 3.7 m

T
N

ID He3 He3W Sc (B10)H2O 

Рис. 1. Cхематическое изображение времяпролетного спектрометра установки ИНЕС на нейтронном канале (N) 
источника РАДЭКС.
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ровой информации (2 байта) каждые 100 нс со 
скоростью 20 МВ / с. Предварительная обра-
ботка и  сжатие информации позволяет сокра-
тить реальный объем данных для записи на диск 
в  630  раз. Типовой набор данных с  установки 
за  время 7  ч составляет порядка 800 MB. Ана-
логовые сигналы обрабатываются выборочно 
16-канальным аналого-цифровым преобразова-
телем CAEN DT5742 (waveform digitizer) [5].

2. ИЗМЕРЕНИЕ ПЛОТНОСТИ ПОТОКА 
НЕЙТРОНОВ

Плотность потока нейтронов Φ(E) модели-
ровалась с  помощью программы MCNP  [6]. 
Мишень состоит из  80% W и  20% H2O. При 
моделировании предполагалось, что протон-
ный пучок с энергией 300 МэВ попадает в центр 
мишени, состоящей из  тонких вольфрамовых 
пластин с общей толщиной 8 см и поперечным 
размером 13 × 13 см2. Рассчитанный поток ней-
тронов Φth(E), вылетающих из мишени вперед 
относительно протонного пучка,  в зависимо-
сти от  энергии нейтронов показан на  рис. 2 а. 
Аппроксимация нейтронного потока в области 
от  1 до  105  эВ зависимостью Φ(E) = С/Eα дает 
значение α = 0.9. Измерение потока нейтронов 
проводилось с помощью мониторных нейтрон-
ных счетчиков. Эти счетчики установлены перед 
сцинтилляционным гамма-детектором в  пучке 
нейтронов вне зоны образца. На рис. 2 б показан 
спектр потока нейтронов в  зависимости от  их 
энергии, измеренный мониторными 3Не-счет-
чиками. На измеренном спектре хорошо виден 
провал от  выбывания нейтронов в  W мишени 
из-за радиационного захвата нейтронов ядрами 

изотопа 180W, а также резонанс с энергией 19 эВ. 
Два других провала обусловлены примесью сле-
дующих изотопов в элементах мишенного узла 
источника РАДЭКС и  нейтронного вакуум-
ного канала: кобальта 59Co, имеющего резонанс 
с энергией 132 эВ, и марганца 55Mn, имеющего 
резонанс с энергией 341 эВ. Измеренный поток 
нейтронов аппроксимируется зависимостью 
Φ(E) = Сg(E) / Eα, где коэффициент 

g expE E
n t

i

i
� � � � �� �� �

обусловлен выбиванием нейтронов элементами 
нейтронного канала. При этом параметры С 
и эффективная плотность i-го изотопа ni опреде-
ляются в результате процедуры аппроксимации 
измеренного потока нейтронов Φexp(E).

Измеренный поток нейтронов Φexp(E) 
и результаты аппроксимации потока зависимо-
стью Cg(E) / Eα показаны на  рис. 2 б. При этом 
показатель степени в  зависимости от  энер-
гии нейтрона составляет величину равную 
α = 0.895 ± 0.005 в области энергии 5–500 эВ. 
Это хорошо согласуется с показателем α = 0.9 для 
смоделированного потока нейтронов.

3. СТАРТОВЫЙ ИМПУЛЬС ДЛЯ 
ВРЕМЯПРОЛЕТНЫХ ИЗМЕРЕНИЙ

Для измерения энергии нейтронов (TOF-
метод) необходимо измерить разность между вре-
менем регистрации гамма-квантов от процесса 
захвата нейтрона ядром и  временем образова-
ния нейтрона. Энергия нейтрона при известной 
длине базы установки L равна E = 0.5 Mn (L / dT)2, 
где Mn  – масса нейтрона и  dT  – разность 
между временем регистрации гамма-квантов 
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и временем образования нейтрона. В  качестве 
стартового импульса, связанного с  временем 
образования нейтрона, можно использовать сиг-
нал синхроимпульса ускорителя или время реги-
страции гамма-квантов, образованных прото-
нами в мишени источника W, гамма-детектором 
установки. В первом варианте точность измере-
ния времени образования нейтронов в мишени 
W зависит в основном от временной нестабиль-
ности синхроимпульса ускорителя, которая 
составляет большую величину, около 1 мкс. При 
взаимодействии протонов с мишенью W источ-
ника рождается на порядок больше гамма-кван-
тов, чем нейтронов,  в расчете на  первичный 
протон. При этом все гамма-кванты достигают 
мишени Au в узком временном интервале дли-
тельности протонного пучка (0.3 мкс), в отличие 
от нейтронов, которые имеют значительно боль-
ший разброс. Например, нейтрон с  энергией 
20 МэВ достигает мишени установки на 0.6 мкс 
позже, чем гамма-кванты. Регистрация вспышки 
от  гамма-квантов и  непрерывная запись циф-
ровой информации от гамма-детектора каждые 
100 нс позволяют получить время начала сброса 
протонов на  мишень с  точностью примерно 
100 нс в каждом импульсе протонного пучка при 
обработке TOF-данных офлайн [4]. Это на поря-
док точнее, чем в первом варианте синхрониза-
ции. При этом синхроимпульс протонного пучка 
играет второстепенную роль и служит для отно-
сительной временной привязки. Таким образом, 
интенсивная вспышка гамма-квантов с длитель-
ностью, равной длительности протонного пучка 
(0.3  мкс), позволяет получить независимый 
от синхроимпульса протонного пучка стартовый 

сигнал для TOF-измерений в каждом импульсе. 
При этом временное разрешение TOF-метода 
будет определяться,  в основном, формой про-
тонного импульса.

4. АППРОКСИМАЦИЯ ПРОТОННОГО  
И НЕЙТРОННОГО ИМПУЛЬСОВ

Форма протонного импульса pexp(t), изме-
ренная индукционным датчиком тока, пока-
зана на рис. 3 а. В первом приближении форму 
протонного импульса можно описать как пря-
моугольное распределение с  шириной, равной 
0.4 мкс примерно для 95% протонов. Остальные 
протоны (около 5%) имеют экспоненциальное 
распределение с  временем спада около 1мкс. 
Более точно несимметричная форма протонного 
импульса может быть описана комбинацией 
функций, состоящей из асимметричной функ-
ции Гаусса G(σ1,σ2) и двух экспонент для обла-
стей времени t < 0 и t > 0:
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Нормированная функция pgex(t) зависит 
от пяти параметров: σ1, σ2, ε, τ1, τ2. Нормировоч-
ный множитель равен Kn = 0.5(σ1 + σ2) + ε(τ1 + τ2). 
Как видно на рис. 3 а, измеренная форма протон-
ного импульса сравнительно хорошо аппрокси-
мируется функцией pgex(t).

Нейтроны, рожденные в мишени источника 
W, испытывают замедление в водной оболочке 
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Рис. 3. а – Измеренная форма протонного импульса pexp(t) и ее аппроксимация функцией pgex(t) (показана сплош-
ной кривой); б – функция w(t) замедления нейтронов в мишени с энергией 150 эВ и ее аппроксимация асимме-

тричной функцией Гаусса G(s1,s2) с s1 = ts и s2 = 2ts (показана сплошной кривой).
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мишени толщиной примерно 4  см. Среднее 
время между столкновениями нейтрона с прото-
нами в водном замедлителе определяется сред-
ней длиной взаимодействия, равной 0.93 см, и 
составляет величину равную ts ~ 0.7 / E 0.5 мкс, где 
E [эВ] – энергия нейтрона на выходе из мишени. 
При ряде упрощающих предположений можно 
показать  [2], что интенсивность выходящих 
из  замедлителя нейтронов описывается нор-
мированной функцией w(t) = 0.5 x2 exp(–x), где 
x = t / ts. Эта функция описывает распределение 
по  времени нейтронов, рожденных в  мишени 
протонами в момент времени t = 0. Эта функ-
ция имеет максимум при t = 2ts и среднее время 
замедления, равное 3ts. Для учета эффекта замед-
ления нейтронов в  водной оболочке мишени 
необходимо использовать смещенную по  вре-
мени функцию w(t) при условии, что она имеет 
максимум при t = 0. На рис. 3 б показан график 
смещенной функции w(t), описывающей замед-
ление нейтронов с энергией 150 эВ со сдвигом 
по времени, равным 2ts. Например, для нейтро-
нов с  энергий 150  эВ среднее время ts  состав-
ляет величину, равную примерно 60 нс. Функ-
ция замедления нейтронов w(t) также хорошо 
аппроксимируется асимметричной функцией 
Гаусса. На рис.  3 б показан результат аппрок-
симации w(t) асимметричной функцией Гаусса 
с дисперсиями равными σ1 = ts и σ2 = 2ts.

Форма нейтронного импульса от  времени 
получается в  результате процедуры свертки 
формы протонного импульса и функции замед-
ления нейтронов. Процедуру получения резуль-
тирующей формы нейтронного импульса для 
двух случаев: измеренного протонного импульса 
pexp(t) и  формы, аппроксимирующей измерен-
ный протонный импульс pgex(t), можно записать 
в следующем виде:

p t p t w t t dtw
exp exp� � � � � �� �� � ��� � � ,

	 p t p t w t t dtw
gex gex� �� �� � � �� � ���� � � � � . 	

(2)

На рис.  4 показаны результаты вычисления 
формы нейтронного импульса для нейтронов 
с  энергией 150  эВ с  использованием измерен-
ной и  аппроксимирующей формы протонного 
импульса. На рис. 4 видно, что результирующие 
формы нейтронного импульса pexp

w (t) и pgex
w (t) 

с  энергией 150  эВ хорошо согласуются между 
собой.

Вычисление формы нейтронного импульса 
путем численного интегрирования требует зна-

чительного времени. Благодаря тому, что асим-
метричная функция Гаусса хорошо описывает 
форму протонного импульса и функцию замед-
ления нейтронов, она также дает возможность 
получить аналитическое выражение для формы 
нейтронного импульса. В  этом приближении 
процесс вычисления сводится к  свертке двух 
функций Гаусса. В итоге можно получить моди-
фицированную аналитическую функцию разре-
шения R(t) для формы нейтронного импульса, 
которая получается из приведенной выше функ-
ции pgex(t) (1) путем простой замены параме-
тров σ1

2
 и σ2

2 на σ1s
2 = σ1

2 + ts
2 и σ2s

2 = σ2
2 + (2ts)2 

соответственно. Функция разрешения R(t) учи-
тывает временной разброс вылета нейтронов 
из мишени источника, обусловленный формой 
импульса протонного пучка и замедлением ней-
тронов в водной оболочке мишени:

�R t K G t
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(3)

Нормировочный множитель равен Kn = 
= 0.5(σ1s + σ2s) + ε(τ1 + τ2). В модифицированной 
формуле параметры σ1s и σ2s описывают основную 
форму протонного импульса c учетом эффекта 
замедления нейтронов в мишени источника.
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Рис. 4. Расчетные формы pexp
w(t) и pgex

w(t) нейтрон-
ного импульса с энергий 150 эВ с учетом функции 
замедления нейтронов в мишени соответственно для 
измеренной формы протонного импульса и полу-
ченной в результате ее аппроксимации асимметрич-

ной функцией Гаусса G(s1, s2).
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5. ПРЕДВАРИТЕЛЬНАЯ КАЛИБРОВКА  
TOF-СПЕКТРОМЕТРА

Предварительная процедура, основанная 
на  сопоставление пиков в  измеренном время-
пролетном спектре  [4] и  энергии резонансов 
в сечении реакции 197Au(n, γ) на основе данных 
ENDF / B-VIII.0 [7], позволяет определить пара-
метры T0 и L по формуле T = T0 + 72.298 L E/ .

Измеренный спектр радиационного захвата 
нейтрона в  образце золота и  сечение взаимо-
действия нейтрона с ядром в реакции 197Au(n,γ) 
в  зависимости от  времени пролета нейтрона 
показаны на рис. 5 а. Для времяпролетного спек-
тра отложено число событий, зарегистрирован-
ных за  100  нс. Сечение взаимодействия ней-
трона с ядром в реакции n,γ соответствует оси 
справа. Ширина канала времяпролетного спек-
тра dТ, равная 100 нс, связана с шириной канала 
спектра по энергии (dE) соотношением dE / E = 
= 2 dT / T. Время пролета T [мкс] нейтрона в уста-
новке в зависимости от энергии нейтрона E [эВ] 
вычисляется по формуле T = T0 + 72.298 L E/  
с  двумя параметрами T0 [мкс] и  L  [м], которые 
определяют начальное время и длину базы уста-
новки соответственно. Аппроксимация изме-
ренных данных по  методу наименьших ква-
дратов (рис.  5 б) дает следующие результаты 
для параметров T0 и L: T0 = 1.18 ± 0.07 мкс, L = 
= 49.39 ± 0.01 м.

6. ИЗМЕРЕНИЕ ЗАВИСИМОСТИ ФОНА  
ОТ ВРЕМЕНИ

Для определения зависимости фона от  вре-
мени используется спектр Сbg(t) без образца 
золота и спектр СAu(t) с образцом золота. Экс-
периментально измеренную вероятность ради-
ационного захвата нейтрона ядром образца Au 
можно выразить следующим образом [8]:
	 Y t C t B t f texp Au� � � � �� � �� � � �� �� � � � ��  � ,	 (4)
где СAu(t) – экспериментально измеренный вре-
мяпролетный спектр радиационного захвата 
нейтрона ядром образца, t – время пролета ней-
трона, B(t) – спектр фона, полученный на основе 
измерений без образца и аппроксимации спек-
тра СAu(t) между резонансами, Φ(t) – поток ней-
тронов, попадающих в  исследуемый образец, 
ε – эффективность детектора гамма-квантов, f – 
часть нейтронного потока, попадающая в обра-
зец. Измеренный спектр фона Сbg(t) аппрокси-
мируется следующей зависимостью:
	 B t C t C t� �� �� � �� �1 2

� � ,	 (5)
где C1, C2, α, β  – параметры зависимости B(t). 
На рис. 6 а показаны измеренные спектры СAu(t) 
с образцом золота и без него Сbg(t). Следует отме-
тить, что статистика при измерении фона Сbg(t) 
в  несколько раз меньше, чем спектра СAu(t). 
В наших измерениях постоянный фон, не зави-
сящий от времени, значительно меньше фона, 
зависящего от времени.
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Рис. 5. а – Измеренный спектр (точки) и сечение взаимодействия нейтрона с ядром в реакции n,γ (сплошная 
синяя линия) в образце Au в диапазоне 100–550 мкс, внизу показаны интерактивные окна изменения параметров 
T0 и L в формуле время–энергия; б – график соответствия пиков времяпролетного спектра и пиков в сечении вза-
имодействия нейтрона с ядром в реакции 197Au(n, γ). По оси абсцисс отложено положение пика времяпролетного 
спектра, по оси ординат – соответствующая энергия пика в этом сечении. Сплошной черной кривой показана 

аппроксимация данных функцией T = T0 + 72.298 L / E1/2.
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Процедура определения параметров фона B(t) 
состоит их двух этапов: на первом этапе опреде-
ляются предварительные параметры фона B(t) 
путем аппроксимации измеренного спектра без 
образца; на  втором этапе процедуры исполь-
зуются предварительные параметры фона для 
финальной аппроксимации параметров фона 
B(t) для спектра СAu(t) с  отобранными участ-
ками спектра между резонансами (см. рис. 6 а). 
Измеренный спектр за  вычетом фона равен 
СAu

exp(t) = СAu(t) – B(t) и представлен на рис. 6 б.

7. АБСОЛЮТНАЯ КАЛИБРОВКА НА БАЗЕ 
РЕЗОНАНСА С ЭНЕРГИЕЙ 4.9 ЭВ

Метод абсолютной калибровки эффектив-
ности детекторов гамма-квантов и  мониторов 
нейтронного потока, использующий измерение 
относительно известного насыщенного резо-
нанса с большим сечением (более 104 бн) пред-
ложен в работе [9]. Резонанс в золоте при энер-
гии 4.9 эВ хорошо известен и имеет в максимуме 
полное сечение равное 3.03×104 бн и 2.73×104 бн 
для радиационного захвата. При таком подходе 
можно переписать выражение для Yexp(E) (4) сле-
дующим образом:
	 Y E C E B E C Enexp Au� � � � �� � �� � � �� � � �� , 	 (6)
где Cn – числовой параметр потока нейтронов, 
нормализующий вероятность захвата Yexp(E) 
ядром образца Au относительно известного 
насыщенного резонанса 4.9 эВ.

В этом подходе неизвестные параметры пол-
ного потока нейтронов и эффективности детек-
торов сводятся к  одному параметру Cn, кото-

рый определяется процедурой аппроксимации 
экспериментального спектра резонанса 4.9 эВ. 
Нейтроны с  энергией около максимума резо-
нанса 4.9  эВ практически полностью погло-
щаются ядром образца с вероятностью равной 
σγ / σt (1 – exp(–nσt)), которая составляет величину 
равную примерно 90%. Сечение σγ радиацион-
ного захвата нейтрона ядром и полное сечение 
σt  вычисляются по  одноуровневым формулам 
Брейта–Вигнера  [10] с  учетом доплеровского 
уширения резонансов. Приведенная толщина Au 
образца n = 6.29 ∙ 10–3 бн–2. Нейтроны в образце 
либо не испытывают, либо испытывают много-
кратное упругое рассеяние до  процесса ради-
ационного поглощения ядром (рис.  7 а). При 
каждом упругом рассеянии нейтроны с энергией 
E теряют энергию в среднем порядка ∆E ~ 2E / A, 
где A  – атомный вес ядра. Приведенная выше 
формула σγ/σt (1  –  exp(–nσt)) для вероятности 
взаимодействия нейтрона с образцом корректна 
для варианта с нулевым многократным рассея-
нием до  радиационного поглощения нейтрона 
ядром.

В наших измерениях используется сравни-
тельно толстый образец золота (1.065 мм), поэ-
тому необходимо учитывать эффект, связанный 
с изменением энергии нейтрона от многократ-
ного упругого рассеяния в  образце. Для этого 
использовался метод Монте-Карло, моделирую-
щий процесс взаимодействия нейтрона с образ-
цом в области каждого резонанса с использова-
нием сечений библиотеки ENDF / B-VIII.0  [7]. 
Для каждого резонанса разыгрывалось несколько 
миллионов событий взаимодействия нейтрона 
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Рис. 6. а – Измеренные спектры c образцом Au (СAu) и без него (Сbg), аппроксимация фона зависимостью B(t) для 
спектров Сbg(t) и СAu(t) показана сплошными линиями; б – измеренный спектр СAu

exp(t) за вычетом фона в области 
времени пролета нейтрона 150–550 мкс.
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с  образцом Au. На примере резонанса 4.9  эВ 
кратко опишем процедуру моделирования 
на основе метода весов [11]. Для описания про-
цедуры определим следующие величины на i-ом 
шаге взаимодействия нейтрона в  образце: вес 
события Wi; энергия нейтрона Ei; длина Li

max 
равна расстоянию от  точки взаимодействия 
(x, y, z,)i до поверхности образца в направлении 
полета нейтрона с углами (θ,ϕ)i; обратная длина 
взаимодействия нейтрона µt(Ei) = ρσt(Ei), где 
ρ – плотность образца; Wγ = σγ(Ei)/σt(Ei); λi(Ei) – 
длина свободного пробега нейтрона. Моделиро-
вание каждого события состоит из  следующих 
этапов:

1) задание начальных значений W0 = 1,  
L0

max = ∆t – толщина образца, (x, y, z,)0 = (0, 0, 0), 
(θ, ϕ)0 = (0,0), вычисление энергии нейтрона E0 
с равномерной плотностью распределения от 0.1 
до 15.1 эВ;

2) вычисление длины свободного пробега 
нейтрона λi(Ei) в пределах от 0 до Li

max и коорди-
наты i-ой вершины (x, y, z)i траектории нейтрона;

3) вычисление нового веса события с wi = 
= wi(1 – exp(–µt(Ei)Li

max(Ei))), вычисление веса 
вероятности захвата нейтрона ядром Yi

cap =  
= wiWγ(Ei), вычисление энергии Ei, вычисление 
(θ,ϕ)i, сохранение данных (iev, где iev – номер 
события, i, Ei, xyz, θ, ϕ, Yi

cap);
5) вычисление нового веса события wi  = 

= wi(1 – Wγ) для следующего шага моделирования;
6) повторение процесса начиная с пункта 2), 

если вес события Wi > 10–6, и остановка про-
цесса, если Wi < 10–6.

На рис.7б показан результат моделирования 
взаимодействия нейтрона в образце Au в области 
резонанса с энергией 4.9 эВ для процесса c мно-
гократным упругим рассеянием (Yms

cap) и  без 
него (Y0

cap). Следует отметить, что процесс без 
многократного упругого рассеяния описывается 
формулой

Y E E E n Eg t t0 1cap  exp� � � � � � � � � � �� �� �� � � .

Поправочная функция Gms(E), учитывающая 
изменение энергии нейтрона вследствие много-
кратного упругого рассеяния в образце, опреде-
ляется следующим образом:

G E Y E Y Ems ms
cap cap � � � � � �� 0 .

На рис.  8 а и  8 б представлена поправочная 
функция Gms(E) для области резонанса с энер-
гией 4.9 эВ и в более широкой области энергий 
до 280 эВ соответственно.

Расчетный спектр CAu
th радиационного захвата 

нейтрона ядром Au, измеренный времяпролет-
ным спектрометром, выражается следующим 
образом:

C C t Y t tnAu
th

th� � � � �� � ,

Y t R t t w E G E dtth ms� � � � � � � � �� � �� , ,

	 w E
E

E
e

t

n Et� � � � �
� �

�� �� � ��

�
� �1 ,	 (7)

где w(E) – вероятность радиационного захвата 
нейтрона ядром с учетом поглощения в образце, 
Cn – числовой параметр потока нейтронов, кото-
рый определяется аппроксимацией измерен-

γ 
ca

p (
E

),
 о
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.е
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Рис. 7. а – Пример взаимодействия нейтрона в образце с упругим многократным рассеянием (0, 1, 2) до радиаци-
онного поглощения ядром; б – вероятность захвата нейтрона ядром Ycap (E) для процесса многократного упругого 

рассеяния Yms
cap

 и без него Y0
cap .
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ного спектра в области насыщенного резонанса 
4.9 эВ, ∆t – ширина временного канала (100 нс), 
Φ(t) – поток нейтронов, падающих на образец, 
измеренный мониторными 3He-счетчиками, 
функция разрешения R(t, t ′) учитывает времен-
ной разброс вылета нейтронов из мишени источ-
ника, обусловленный формой импульса протон-
ного пучка и замедлением нейтронов в водной 
оболочке мишени, Gms(E) – поправочная функ-
ция, учитывающая изменение энергии нейтрона 
вследствие многократного упругого рассеяния 
в  образце. Сечение σγ  радиационного захвата 
нейтрона ядром и  полное сечениеσt вычисля-
ются по  одноуровневым формулам Брейта–
Вигнера [10] с учетом доплеровского уширения 
резонансов.

Измеренный CAu
exp и расчетный CAu

th время-
пролетные спектры реакции (n, γ) для резонанса 

с энергией 4.9 эВ в образце Au показаны на рис. 9. 
Расчетный спектр CAu

th (рис.  9 а) вычисляется 
с учетом поправочной функции Gms(E), учитыва-
ющей изменение энергии нейтрона вследствие 
многократного упругого рассеяния в образце. На 
рис. 9 б показан расчетный спектр CAu

th без учета 
функции Gms(E).

Как видно из  сравнения рис.  9 а и  9 б, учет 
эффекта изменение энергии нейтрона вслед-
ствие многократного упругого рассеяния ней-
тронов в образце существенно улучшает согла-
сие измеренного спектра с расчетным. Следует 
отметить, что моделирования эффекта измене-
ния энергии нейтрона вследствие многократного 
упругого рассеяния нейтрона в образце и обра-
ботка данных эксперимента написаны на языке 
python с использованием многочисленных паке-
тов (math, numpy, scipy, ...) [12].
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Рис. 9. а – Измеренный CAu
exp и расчетный CAu

th спектры с учетом поправочной функции Gms для резонанса с энер-
гией 4.9 эВ; б – то же самое без учета поправочной функции.

Рис. 8. а – Поправочная функция Gms(E), учитывающая изменение энергии нейтрона вследствие многократного 
упругого рассеяния в образце для резонанса с энергией 4.9 эВ; б – функция Gms(E) для резонансов с энергией 

меньше 280 эВ.
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8. КАЛИБРОВОЧНЫЕ ИЗМЕРЕНИЯ 
СЕЧЕНИЯ РЕАКЦИИ (n, γ) В ОБРАЗЦЕ 

ЗОЛОТА

Для тонкого образца, когда величина nσt 
много меньше единицы, функция (7), описыва-
ющая вероятность w(E) радиационного захвата 
нейтрона ядром с учетом поглощения в образце, 
сводится к  выражению w(E) ≈ n  σγ(E), где n  и 
σγ(E)  – соответственно приведенная толщина 
образца и сечение радиационного захвата ней-
трона ядром. Поправочная функция Gms(E), 
учитывающая изменение энергии нейтрона 
вследствие многократного упругого рассеяния 
в  случае тонкого образца, становится близкой 
к единице. Функция разрешения R(t, t′), учиты-
вающая временной разброс вылета нейтронов 
из мишени источника, обусловленный формой 
импульса протонного пучка и замедлением ней-
тронов в водной оболочке мишени, превраща-
ется в  идеальном эксперименте в  δ-функцию 
по времени. В этом случае расчетный спектр Yth 
радиационного захвата нейтрона ядром в при-
ближении идеального разрешения и  тонкого 
образца упрощается и может быть записан в сле-
дующем виде:

Y E w Eth � � � � �� , �w E
E

E
e

t

n t� � � � �
� �

�� �� ,
�

�
� �1  

	 w E n E� � � � .�� 	 (8)

Выражение (8) для случая толстого образца 
может быть переписано через функцию Rw(E) 
в следующем упрощенном виде:

�Y E R E w Eth w� � � � � � � ,
R E R t t w E G E dt w Ew ms� � � �� � �� � �� � � � �� , / .

Относительная функция Rw(E) учитывает вре-
менной разброс вылета нейтронов из  мишени 
источника и  эффект изменения энергии ней-
трона вследствие многократного упругого рас-
сеяния нейтронов в образце относительно веро-
ятности w(E) радиационного захвата нейтрона 
ядром в  идеальном случае. Исходя из  условия 
Yexp(E) = Yth(E) и выражения (9), можно выразить 
сечение радиационного захвата нейтрона ядром 
σγ

exp через экспериментально измеренную веро-
ятность радиационного захвата нейтрона ядром 
в следующем виде:

	 �
�

��
exp exp

exp
�

� �
� � � �� �� �

Y E

R E n
t

w t1
,	 (10)

где σt  – полное сечение взаимодействия ней-
трона с ядром.

Обработка измеренных данных и восстанов-
ление сечений радиационного захвата нейтрона 
ядром на  времяпролетном спектрометре уста-
новки ИНЕС с толстым образцом Au (1.065 мм) 
проводилась в  диапазоне энергий нейтрона 
до  300  эВ. Расчетное сечение σγ

th
 радиацион-

ного захвата Au получено на основе базы данных 
резонансов ENDF / B-VIII.0  [7]. Введем термин 
измеренное сечение σγ

exp, который означает сече-
ние, восстановленное из  измеренных выходов 
Yexp(E) по формуле (10). Для большей наглядно-
сти измеренное сечение σγ

exp
 и расчетное сече-

ние σγ
th

 реакции (n,γ) показаны в  более узком 
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 и расчетное σγ
th

 сечения взаимодействия нейтрона с ядром в реакции n,γ в диапа-
зоне 100–200 эВ для образца Au (1.065 мм) в эксперименте ИНЕС; б – то же самое для образца Au (0.122 мм) 
в  эксперименте n_TOF. Расчетное сечение радиационного захвата Au на  основе данных ENDF / B-VIII.0  
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диапазоне энернгий100–200 эВ на рис. 10 а. На 
этом рисунке видно, что измеренное и расчетное 
сечения хорошо согласуются между собой.

В эксперименте n_TOF [8] были проведены 
самые точные измерения сечения радиацион-
ного захвата нейтрона ядром Au с тонким образ-
цом (0.122 мм). При этом длительность протон-
ного пучка составляла величину, равную 6  нс, 
пролетная база равнялась 185  м. В  установке 
ИНЕС эти величины равны 300 нс и 50 м соот-
ветственно. Таким образом, условия (8) идеаль-
ного эксперимента практически реализованы 
в установке n_TOF.

Измеренное σγ
exp

 и расчетное σγ
th

 сечения вза-
имодействия нейтрона с ядром для реакции n, γ 
в  диапазоне 100–200  эВ в  тонком образце Au 
(0.122 мм) в эксперименте ИНЕС вычислялось 
по формуле (10) с использованием данных экс-
перимента n_TOF из базы данных [7]. При этом 
функция Rw(E) заменяется нормировочной кон-
стантой равной 1.1. Экспериментальные данные 
n_TOF по выходу нейтронов нормируются таким 
образом, что Yexp(4.9 эВ) = 1.

На рис. 10 б показаны измеренное σγ
exp

 и рас-
четное σγ

th
 сечения взаимодействия нейтрона 

с ядром для реакции n,γ в диапазоне 100–200 эВ 
в тонком образце Au (0.122 мм) в эксперименте 
n_TOF. Сравнение рис.  10 а и  10 б показывает 
хорошее согласие измеренных сечений в  экс-
перименте ИНЕС с данными эксперимента n_
TOF [8]. Сравнение измеренных сечений с рас-
четными сечениями, полученными на  основе 
параметров резонансов ENDF / B-VIII.0  [7],  и 
сечениями, полученными ранее в эксперименте 
n_TOF с тонкой мишенью, показывает, что эти 
сечения хорошо согласуются между собой.

9. ЗАКЛЮЧЕНИЕ

Разработан метод определения стартового 
импульса для времяпролетной методики, кото-
рый существенно повышает точность временной 
привязки к импульсу протонного пучка. Изме-
рен энергетический спектр импульсного источ-
ника нейтронов РАДЭКС и проведено сравне-
ние с  результатами моделирования. Описана 
процедура определения формы импульса ней-
тронов от времени на базе измеренной формы 
импульса протонного пучка с учетом замедления 
нейтронов в  мишени. Описан метод абсолют-
ной калибровки спектрометра с учетом эффекта 
изменения энергии нейтрона вследствие много-

кратного упругого рассеяния нейтрона в образце. 
Разработана процедура реконструкции сечений 
радиационного захвата нейтрона ядром для слу-
чая толстого образца. Представлены результаты 
измерений сечений радиационного захвата ней-
трона ядром Au на  времяпролетном спектро-
метре установки ИНЕС с энергиями до 300 эВ. 
Измеренные сечения хорошо согласуются с рас-
четными сечениями на основе известных пара-
метров резонансов и сечениями, полученными 
ранее в эксперименте с тонким образцом.
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