ОФНПриборы и техника эксперимента Instruments and Experimental Techniques

  • ISSN (Print) 0032-8162
  • ISSN (Online) 3034-5642

ПОЛУПРОВОДНИКОВЫЕ ИСТОЧНИКИ И ДЕТЕКТОРЫ ПОЛЯРИЗОВАННЫХ ПО СПИНУ ЭЛЕКТРОНОВ В ИССЛЕДОВАНИЯХ РЕЗОНАНСНОГО РАССЕЯНИЯ ЭЛЕКТРОНОВ

Код статьи
S30345642S0032816225010091-1
DOI
10.7868/S3034564225010091
Тип публикации
Статья
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том / Номер выпуска 1
Страницы
64-72
Аннотация
Представлены результаты по созданным нами полупроводниковому источнику спин-поляризованных электронов и спин-детектору, а также концепция их интегрирования в метод спектроскопии диссоциативного захвата электронов (СДЗЭ) с учетом необходимых значений параметров электронного пучка, при которых наблюдаются резонансное рассеяние и диссоциативный захват. Описана конструкция установки для изучения резонансного рассеяния спин-поляризованных электронов методом СДЗЭ, которая позволит проводить исследования внутримолекулярной динамики изолированных отрицательных ионов. Основная цель разработки и изготовления установки состоит в возможности исследования с ее помощью взаимодействия спин-поляризованных электронов с хиральными молекулами, что позволит осуществить экспериментальную проверку гипотезы Вестера–Ульбрихта о происхождении биологической гомохиральности. Помимо данного основополагающего вопроса, ожидаемые результаты предлагаемого эксперимента важны для перспективных направлений спинтроники, а также для установления молекулярных механизмов различного биологического действия энантиомеров фармацевтических препаратов.
Ключевые слова
спин-поляризованные электроны полупроводниковые источники спин-детекторы резонансное рассеяние диссоциативный захват электронов хиральные молекулы гомохиральность
Дата публикации
17.02.2026
Год выхода
2026
Всего подписок
0
Всего просмотров
21

Библиография

  1. 1. Blum K., Kleinpoppe H. // Adv. At. Mot. Phys. 1983. V. 19. P. 187. https://doi.org/10.1016/S0065-2199 (08)60254-7
  2. 2. Dellen A. // J. Phys. B: At. Mol. Opt. Phys. 1995. V. 28. P. 4867. https://doi.org/10.1088/0953-4075/28/22/017
  3. 3. Blum K., Thompson D. // J. Phys. B. 1989. V. 22. P. 1823. https://doi.org/10.1088/0953-4075/22/11/016
  4. 4. Mason N.J. // Polarized Electron/Polarized Photon Physics. Boston, MA: Springer US, 1995. P. 209.
  5. 5. Farago P.S. // J. Phys. B: At. Mol. Phys. 1980. V. 13. L567. https://doi.org/10.1088/0022-3700/13/18/004
  6. 6. Blum K. // Coherence in Atomic Collision Physics / Ed. by H.J. Beyer et al. New York: Springer Science+Business Media, 1988. P. 89. https://doi.org/10.1007/978-1-4757-9745-9_3
  7. 7. Veste F., Ulbrich T.L.V., Krauch H. // Naturwissenschaften. 1959. V. 46. P. 68. https://doi.org/10.1007/BF00599091
  8. 8. Beerlage M.J.M., Farago P.S., van der Wiel M.J. // J. Phys. B: At. Mol. Phys. 1981. V. 14. P. 3245. https://doi.org /10.1088/0022-3700/14/17/027
  9. 9. Trantham K.W., Johnston M.E., Gay T.J. // J. Phys. B: At. Mol. Opt. Phys. 1995. V. 28. L543. https://doi.org /10.1088/0953-4075/28/17/004
  10. 10. Mayer S., Nolting C., Kessler J. // J. Phys. B: At. Mol. Opt. Phys. 1996. V. 29. P. 3497. https://doi.org /10.1088/0953-4075/29/15/021
  11. 11. Dreiling J.M., Lewis F.W., Gay T.J. // J. Phys. B: At. Mol. Opt. Phys. 2018. V. 51. 21LT01. https://doi.org /10.1088/1361-6455/aae1bd
  12. 12. Sanche L., Schulz G.J. // Phys. Rev. A. 1972. V. 5. P. 1672. https://doi.org/10.1103/PhysRevA.5.1672
  13. 13. Dreiling J.M., Gay T.J. // Phys. Rev. Lett. 2014. V. 113. 118103. https://doi.org/10.1103/PhysRevLett.113.118103
  14. 14. Dreiling J.M., Lewis F.W., Mills J.D., Gay T.J. // Phys. Rev. Lett. 2016. V. 116. 093201. https://doi.org/10.1103/PhysRevLett.116.093201
  15. 15. Bakin V.V., Pakhnevich A.A., Zhuravlev A.G., Shornikov A.N., Akhundov I.O., Tereshechenko O.E., Alperovich V.L., Scheibler H.E., Terekhov A.S. // e-J. Surf. Sci. Nanotech. 2007. V. 5. P. 80. https://doi.org/10.1380/ejssnt.2007.80
  16. 16. Meier F., Zakharchenya В.Р. Optical Orientation. Amsterdam, Oxford, New York, Tokyo: North-Holland, 1984.
  17. 17. Michizono S. // Nat. Rev. Phys. 2019. V. 1. P. 244. https://doi.org/10.1038/s42254-019-0044-4
  18. 18. Rusetsky V.S., Golyashov V.A., Eremeev S.V., Kustov D.A., Rusinov I.P., Shamirzaev T.S., Mironov A.V., Demin A.Yu., Tereshchenko O.E. // Phys. Rev. Lett. 2022. V. 129. 166802. https://doi.org/10.1103/PhysRevLett.129.166802
  19. 19. Tereshchenko O.E., Golyashov V.A., Rusetsky V.S., Mironov A.V., Demin A.Y., Aksenov V.V. // J. Synchrotron Radiat. 2021. V. 28. P. 864. https://doi.org/10.1107/S1600577521002307
  20. 20. Golyashov V.A., Rusetsky V.S., Shamirzaev T.S., Dmit­riev D.V., Kislykh N.V., Mironov A.V., Aksenov V.V., Tereshchenko O.E. // Ultramicroscopy. 2020. V. 218. 113076. https://doi.org/10.1016/j.ultramic.2020.113076
  21. 21. Rodionov A.A., Golyashov V.A., Chistokhin I.B., Jaroshevich A.S., Derebezov I.A., Haisler V.A., Shamirzaev T.S., Marakhovka I.I., Kopotilov A.V., Kislykh N.V., Mironov A.V., Aksenov V.V., Tereshchenko O.E. // Phys. Rev. Appl. 2017. V. 8. 034026. https://doi.org/10.1103/PhysRevApplied.8.034026
  22. 22. Tereshchenko O.E., Golyashov V.A., Rodionov A.A., Chistokhin I.B., Kislykh N.V., Mironov A.V., Aksenov V.V. // Sci. Rep. 2017. V. 7. P. 16154. https://doi.org/10.1038/s41598-017-16455-6
  23. 23. Tereshchenko O.E., Chikichev S.I., Terekhov A.S. // J. Vacuum Sci. Technol. A. 1999. V. 17. P. 2655. https://doi.org/10.1116/1.581926
  24. 24. Tereshchenko O.E., Golyashov V.A., Rusetsky V.S., Kustov D.A., Mironov A.V., Demin A.Yu. // Nanomaterials. 2023. V. 13. P. 422. https://doi.org/10.3390/nano13030422
  25. 25. Li X., Tereshchenko O.E, Majee S., Lampel G., Lassailly Y., Paget D., Peretti J. // Appl. Phys. Lett. 2014. V. 105. 052402. https://doi.org/10.1063/1.4892073
  26. 26. Tereshchenko O.E., Lamine D., Lampel G., Lassailly Y., Li X., Paget D., Peretti J. // J. Appl. Phys. 2011. V. 109. 113708. https://doi.org/10.1063/1.3592976
  27. 27. Tereshchenko O.E., Golyashov V.A., Eremeev S.V., Maurin I., Bakulin A.V., Kulkova S.E., Aksenov M.S., Preobrazhenskii V.V., Putyato M.A., Semyagin B.R., Dmitriev D.V., Toropov A.I., Gutakovskii A.K., Khandarkhaeva S.E., Prosvirin I.P., Kalinkin A.V., Bukhtiyarov V.I., Latyshev A.V. // Appl. Phys. Lett. 2015. V. 107. 123506. https://doi.org/10.1063/1.4931944
  28. 28. Хвостенко В.И. Масс-спектрометрия отрицательных ионов в органической химии. М.: Наука, 1981.
  29. 29. Christophorou L.G. Electron-molecule interactions and their applications. Orlando: Academic Press, 1984.
  30. 30. Illenberger E., Momigny J. Gaseous molecular ions. An introduction to elementary processes induced by ionization. Steinkopff Verlag Darmstadt: Springer-Verlag, 1992.
  31. 31. Пшеничнюк С.А., Асфандиаров Н.Л., Воробьев А.С., Матейчик Ш. // УФН. 2022. Т. 192. С. 177. https://doi.org/10.3367/UFNr.2021.09.039054
  32. 32. Stamatovic A., Schulz G.J. // Rev. Sci. Instrum. 1968. V. 39. P. 1752. https://doi.org/10.1063/1.1683220
  33. 33. Асфандиаров Н.Л., Пшеничнюк С.А., Фалько В.С., Ломакин Г.С. // ПТЭ. 2013. Т. 56. C. 86. https://doi.org/10.7868/S0032816213010035
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека